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A B S T R A C T   

Introduction: Our understanding of risk factors for COVID‑19, including pre-existing medical conditions and 
genetic variations, is limited. To what extent the pre-existing clinical condition and genetic background have 
implications for COVID-19 still needs to be explored. 
Methods: Our study included 389,620 participants of European descent from the UK Biobank, of whom 3,884 
received the COVID-19 test and 1,091 were tested positive for COVID-19. We examined the association of 
COVID-19 status with an extensive list of 974 medical conditions and 30 blood biomarkers. Additionally, we 
tested the association of genetic variants in two key genes related to severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) infection, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 
2 (TMPRSS2), with COVID-19 or any other phenotypes. 
Results: The most significant risk factors for COVID-19 include Alzheimer’s disease (OR = 2.29, 95% CI: 
1.25–4.16), dementia (OR = 2.16, 95% CI: 1.36–3.42), and the overall category of delirium, dementia, amnestic 
and other cognitive disorders (OR = 1.90, 95% CI: 1.24–2.90). Evidence suggesting associations of genetic 
variants in SARS-CoV-2 infection-related genes with COVID-19 (rs7282236, OR = 1.33, 95% CI: 1.14–1.54, p =
2.31 × 10− 4) and other phenotypes, such as an immune deficiency (p = 5.65 × 10− 5) and prostate cancer (p =
1.1 × 10− 5), was obtained. 
Conclusions: Our unbiased and extensive search identified pre-existing Alzheimer’s disease and dementia as top 
risk factors for hospital admission due to COVID-19, highlighting the importance of providing special protective 
care for patients with cognitive disorders during this pandemic. We also obtained evidence suggesting a direct 
association of genetic variants with COVID-19.   

1. Introduction 

The pandemic of coronavirus disease 2019 (COVID‑19), which is 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2), has led to at least 6 million confirmed cases of infection and 370,000 
deaths by the end of May 2020 (World Health Organization, 2020). A 
growing number of studies have started to accumulate information on 
the common characteristics of patients with COVID-19 and risk factors 

for viral infection and disease progression (Grasselli et al., 2020; 
Richardson et al., 2020; Docherty et al., 2020). Older age, male sex, 
African ethnicity, a lower socioeconomic status, and some pre-existing 
medical conditions (e.g., chronic kidney diseases and obesity) have 
been repeatedly associated with a positive COVID-19 test and/or 
adverse outcomes (Docherty et al., 2020; Niedzwiedz et al., 2020; Raisi- 
Estabragh et al., 2005; de Lusignan et al., 2020; Kumar et al., 2020; 
Petrilli et al., 2020). The vast majority of these existing studies relied on 
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recently assembled cohorts of patients with COVID-19, and due to the 
time constraints, the sample size and the number of risk factors evalu-
ated are both limited (de Lusignan et al., 2020; Kumar et al., 2020; 
Petrilli et al., 2020; Yang et al., 2020; Guo et al., 2020; Bianchetti et al., 
2020). Moreover, candidate factors were usually chosen based on the 
ease of collection, clinical experience, and prior publications, with some 
medical conditions (e.g., diabetes, respiratory and cardiovascular con-
ditions) receiving much more attention than others (e.g., cognitive 
disorders) (de Lusignan et al., 2020; Kumar et al., 2020; Petrilli et al., 
2020; Yang et al., 2020; Guo et al., 2020; Bianchetti et al., 2020). More 
risk factors likely remain to be tested and identified. The addition of the 
COVID-19 status to previously existing population cohorts with 
comprehensive electronic health records, such as the UK Biobank (UKB) 
(Bycroft et al., 2018), provide a valuable opportunity to perform an 
unbiased and exhaustive search across all available phenotypes (i.e., the 
phenome) to identify novel risk factors. 

Another likely source of individual differences in responses to the 
SARS-CoV-2 is genetic variations. These variations may directly affect 
virus entry and replication, and/or indirectly predispose individuals to 
medical conditions that exacerbate COVID-19 progression. For instance, 
the ApoE e4 genotype, a known genetic risk factor for both dementia and 
Alzheimer’s disease, was recently shown to be associated with an 
increased risk of a severe COVID-19 infection (Kuo et al., 2020). While 
efforts are still ongoing to assemble COVID-19 cohorts and to sequence 
patient genomes in order to map host genetic determinants of suscep-
tibility and severity (Murray et al., 2020), we are able to leverage deep 
genomic and phenotyping data in existing biobanks to evaluate the 
clinical effects of genetic variants in human genes known to be indis-
pensable for SARS-CoV-2 infection. Angiotensin converting enzyme 2, 
encoded by ACE2, is the cell surface receptor for the viral spike (S) 
protein (Zhou et al., 2020), while transmembrane protease serine 2, 
encoded by TMPRSS2, is essential for priming S protein-mediated 
membrane fusion (Hoffmann et al., 2020). Genetic variants located 
around TMPRSS2 have been previously associated with prostate cancer 
(Al Olama et al., 2014), heart failure and coronary heart disease (He 
et al., 2016). However, no associations have been reported for ACE2 in 
the GWAS Catalog (Buniello et al., 2019), likely because ACE2 is located 
on the X chromosome, a part of the genome that is commonly neglected 
in genome-wide analysis (Chang et al., 2014). Similarly, in the existing 
UKB GWAS database, GeneATLAS, no information was available for the 
sex chromosome and thus ACE2 (Canela-Xandri et al., 2018). Very 
recent efforts to investigate the clinical effects of ACE2 and TMPRSS2 did 
not identify associations that reach genome-wide statistical significance 
(Curtis, 2005; Cirulli et al., 2004; Lopera et al., 2004). Extensive 
searches including more phenotypes in cohorts with much larger sample 
sizes will likely reveal novel findings. 

UKB is a large population-based prospective study established to 
investigate genetic and environmental determinants of human diseases. 
More than 500,000 middle-aged participants were recruited between 
2006 and 2010, for whom deep genomic and phenotyping data were 
collected, including genome-wide genotypes, physical measurements, 
sociodemographic factors, lifestyle indicators, biomarkers in blood and 
urine, and linkage to medical records (Bycroft et al., 2018). Recently, 
Public Health England provided COVID-19 test results for UKB partici-
pants. Since testing was initially prioritized to patients in the hospital or 
with a severe respiratory illness, test positivity may indicate severe 
disease in the UK (Iacobucci, 2020). In this data-driven phenome-wide 
association study (PheWAS), we leverage the extensive UKB resource to 
identify (i) pre-existing medical conditions that are overrepresented in 
patients with COVID-19, and (ii) the clinical effects of genetic variants in 
ACE2 and TMPRSS2, including their direct associations with COVID-19. 

2. Methods 

2.1. UK Biobank cohort 

UK Biobank (UKB) is a large population-based prospective study 
established for investigations of genetic and nongenetic determinants of 
diseases in middle- and old-aged adults. More than 500,000 individuals 
aged 40–69 years were recruited between 2006 and 2010, all of whom 
underwent baseline measurements, donated biological materials, and 
provided access to their medical records. The project was approved by 
the North West Multi-Centre Research Ethics Committee and appro-
priate informed consent was obtained from participants (Bycroft et al., 
2018). Data used in the project were accessed through an approved 
application to UKB (Application ID: 48818). We analyzed data from 
participants of self-reported European ancestry and excluded in-
dividuals from this analysis if they enrolled outside of England, died 
prior to September 2019, or the self-reported sex was not consistent with 
genetic information. In total, 389,620 participants were included in this 
analysis. COVID-19 laboratory test results reported for UKB participants 
in England from March 16 to May 18, 2020, were included. During this 
period, COVID-19 testing was largely restricted to hospitalized patients 
with serious illness who required active medical intervention; therefore, 
these data are regarded as a proxy for hospitalization for COVID-19 in 
England only (Iacobucci, 2020). 

2.2. Phenotypes 

We analyzed three sets of phenotypes (i.e., inpatient hospital re-
cords, cancer registry, and death registry) available in the UKB database. 
We used the International Classification of Diseases (ICD) versions 9 and 
10 to identify cases in the hospital episode statistics, with both incident 
and prevalent cases included. Self-reported diagnoses were not consid-
ered. Diagnoses of ICD9/ICD10 for phenotypic analyses were mapped to 
the PheCODE grouping system. Compared with ICD codes, phecodes 
have been shown to closely align with disease categories commonly used 
in clinical practice and genomic studies (Wu et al., 2019). For each 
disease category represented by a phecode, we recoded participants 
with the phecode as cases, whereas participants without the target 
phecode or its parent or child phecodes were classified as controls. 
Analysis was limited to phecodes that had enough cases in order to 
generate more than 80% statistical power. The numbers of cases and 
controls in analyses of phenotypes are shown in Table S1. Sex-stratified 
analyses were performed in males and females, separately. In addition to 
these phenotypes, 30 biomarkers, measured in blood samples collected 
at recruitment, were included in association analyses (Bycroft et al., 
2018). 

2.3. Tag SNPs for ACE2 and TMPRSS2 

Tag SNPs, capturing haplotype structures and common genetic var-
iants in the regulatory and coding regions of ACE2 and TMPRSS2 were 
selected based on the whole-genome sequencing data of 91 British in-
dividuals from the 1,000 Genomes Project (Genomes Project C, Auton A, 
Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, 
McCarthy S, 2015). For each gene, genetic variants fulfilling all the 
following criteria were included in the analysis: 1) 5 kb upstream or 
downstream of the coding region or associated with the expression of the 
gene in any tissue in the GTEx project (Consortium, 2017); 2) biallelic 
SNPs; 3) minor allele frequencies >= 5%. Tag SNPs were further 
selected using the Tagger function in Haploview 4.2 with r2 > 0.5 
(Barrett et al., 2005). Seventeen tag SNPs were selected for ACE2 and 31 
were selected for TMPRSS2. Once these tag SNPs were identified, we 
tested their associations with hospitalization for COVID-19 and pheno-
types across the phenome in the UK Biobank. 
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2.4. Statistical analysis 

Baseline characteristics are presented as the number (percentage) of 
participants for categorical variables and the mean (standard deviation) 
for continuous variables. We performed a logistic regression analysis to 
estimate the association between each phenotype and hospitalization 
with a positive COVID-19 test, while correcting for age, sex, body mass 
index (BMI), assessment center, and 10 genetic principal components. 
Two types of control samples were used: all other UKB participants who 
had not yet been tested or tested negative and only participants who 
tested negative. The effect of each categorical phenotype was measured 
as an odds ratio (OR). In the blood biomarker analysis, biomarker levels 
were normalized, and the ORs correspond to each one standard devia-
tion (SD) increase in biomarker levels. We performed a logistic regres-
sion analysis of each pair of SNPs and phenotypes, with cases and 
controls defined as above, while adjusting for age, sex, assessment 
center, type of genotyping array, and the top 10 genetic principal 
components, to evaluate the associations between tag SNPs in ACE2 and 
TMPRSS2 with all possible phenotypes. 

The associations between tag SNPs and COVID-19 test positivity 
were analyzed using all other UKB participants as the control group. Sex- 
stratified analyses were separately conducted in males and females, 
separately, with the same covariates except sex. We applied the Bon-
ferroni correction for the number of phenotypes evaluated in the com-
parison between COVID-19 patients and other UKB participants. 
Statistical analyses were performed using R (version 3.6.2), and the 
PheWAS package was used to facilitate the phenome-wide association 
analysis (Carroll et al., 2014). 

3. Results 

3.1. Baseline characteristics of the study population 

After quality control and the exclusion of confounding factors, such 
as residence outside of England, death prior to September 2019, and 

inconsistent sex information, a total of 389,620 self-reported European 
participants were included in our study (Tables 1). Of these participants, 
3,884 (0.997%) patients were tested for COVID-19, and 1,091 of them 
(19.75%) were tested positive at least once while in the hospital. 
Compared to all other UKB participants (i.e., untested or tested nega-
tive), patients who tested positive for COVID-19 were older (p = 0.024), 
tend to be male (p = 7.33 × 10-8), had a higher BMI (p = 7.27 × 10-18) 
and were previous or current smokers (p = 2.84 × 10-5). Compared to 
participants who were tested negative, patients with COVID-19 still had 
a higher BMI (p = 3.9 × 10-3) and tend to be male (p = 3.2 × 10-3) 
(Table S2 in supporting information). Age, sex, and BMI were included 
as covariates in our analyses. 

3.2. Phenome-wide association study for COVID-19 

We performed an exhaustive association analysis across 974 phe-
notypes and 30 blood biomarkers to identify pre-existing medical con-
ditions that are overrepresented in patients with COVID-19, with all 
other UKB participants and COVID-19-negative individuals served as 
controls. Compared to all other UKB participants, a wide range of pre- 
existing conditions were overrepresented in patients with COVID-19, 
even after the Bonferroni correction (Fig. 1A and Table S3 in the sup-
porting information). Some of the most significant associations included 
the overall category of delirium, dementia, amnestic and other cognitive 
disorders (p = 1.36 × 10-44), dementia (p = 3.48 × 10-44), renal failure 
(p = 2.63 × 10-31), Alzheimer’s disease (p = 1.33 × 10-29), type 2 dia-
betes (p = 2.45 × 10-27), pneumonia (p = 8.43 × 10-24), hypertension (p 
= 1.31 × 10-23), and hyperlipidemia (p = 9.94 × 10-22). Since these 
overrepresented conditions may only reflect sampling bias in individuals 
who received COVID-19 tests, we made further correction against this 
bias by comparing patients with COVID-19 to participants who were 
tested negative (Fig. 1B and Fig. 2 and Table S4 in supporting infor-
mation). Some phenotypes were consistently overrepresented in pa-
tients with COVID-19: the overall category of delirium, dementia, 
amnestic and other cognitive disorders (OR = 1.90, 95% CI: 1.24–2.90 
in combined samples; OR = 2.06, 95% CI: 1.11–3.81 in males), dementia 
(OR = 2.16, 95% CI: 1.36–3.42 in combined samples; OR = 2.05, 95% 
CI: 1.05–3.98 in males; OR = 2.24, 95% CI: 1.18–4.24 in females), 
Alzheimer’s disease (OR = 2.29, 95% CI: 1.25–4.16 in combined sam-
ples; OR = 2.40, 95% CI: 1.02–5.62 in males), and type 2 diabetes (OR =
1.25, 95% CI: 1.00–1.55 in combined samples). The comparison to 
participants who were tested negative also revealed the following novel 
comorbidities that were overrepresented in patients with COVID-19: 
bronchiectasis (OR = 2.95, 95% CI: 1.23–7.05 in males), varicose 
veins (OR = 1.71, 95% CI: 1.20–2.42 in combined samples; OR = 1.81, 
95% CI: 1.13–2.89 in females), varicose veins in the lower extremities 
(OR = 1.69, 95% CI: 1.18–2.42 in combined samples; OR = 1.74, 95% 
CI: 1.08–2.80 in females), reflux esophagitis (OR = 1.65, 95% CI: 
1.03–2.63 in females), fracture of the clavicle or scapula (OR = 8.40, 
95% CI: 1.61–43.43 in females), and fracture of the radius and ulna (OR 
= 2.5, 95% CI: 1.00–6.22 in males) (Fig. 2). 

In the blood biomarker analysis, at the nominal significance level, 
four biomarkers were different between patients with COVID-19 and 
participants who were tested negative (Fig. 3 and Table S5 in the sup-
porting information). Each SD increase in high-density lipoprotein 
cholesterol (HDL) and apolipoprotein A (Apo(a)) levels was associated 
with reduced risks of COVID-19 (OR = 0.82, 95% CI: 0.75–0.90; OR =
0.85, 95% CI: 0.78–0.92, respectively). On the other hand, rheumatoid 
factor and triglyceride levels were associated with increased risks (OR =
1.33, 95% CI: 1.03–1.72; OR = 1.08, 95% CI: 1.00–1.16, respectively). 
Overall, our extensive phenome-wide search highlighted multiple pre- 
existing medical conditions, particularly Alzheimer’s disease and de-
mentia, as risk factors for COVID-19. 

Table 1 
Baseline characteristics of UK Biobank participants by COVID-19 test positivity.  

Characteristic All 
Participants 

Test 
Negative 

COVID-19 Test 
Positive 

(N = 389,620) (N = 2,793) (N = 1,091) 

Sex    
Male 176,151 1,343 582 
Female 213,469 1,450 509 
Age at 56.62(8.03) 57.71(8.59) 57.17(9.23) 
Recruitment 
BMI 27.25(4.95) 27.91(5.88) 28.52(5.85) 
Smoking status    
not answer 1,368 13 8 
Never 211,495 1,282 492 
Previous 138,423 1,110 471 
Current 38,315 388 120 
Alcohol use    
not answer 329 6 2 
Never 12,195 101 30 
Previous 12,885 144 67 
Current 364,211 2,542 992 
Pre-existing 

conditions    
Type 2 diabetes 19,732 450 144 
Hypertension 86,337 306 394 
Obesity 15,361 214 83 
Dementias 992 45 34 
Alzheimer’s disease 509 25 20 
Biomarkers    
HDL cholesterol 1.45 (0.38) 1.43 (0.37) 1.35 (0.38) 
Apolipoprotein A 1.55 (0.26) 1.52 (0.27) 1.48 (0.24) 
Triglycerides 1.74 (1.01) 1.76 (1.02) 1.86 (1.03) 
Rheumatoid factor 24.35 (19.6) 22.1 (19.6) 27.9 (18.6)  
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3.3. Phenome-wide association study of ACE2 and TMPRSS2 

Genetic variants in human genes that mediate SARS-CoV-2 infection 
(e.g., ACE2 and TMPRSS2) may directly affect viral susceptibility or 
indirectly influence pre-existing medical conditions. We evaluated the 
direct associations between common genetic variants in these two genes 
and COVID-19 test positivity to assess the former possibility. Seventeen 
and 31 tag SNPs were selected to capture haplotype structures and 
common genetic variants in the regulatory and coding regions of ACE2 
and TMPRSS2, respectively. We did not identify associations reaching 
the genome-wide significance cutoff (p < 5 × 10-8, Table S6 in the 
supporting information). However, five tag SNPs for TMPRSS2 were 
associated with COVID-19 test positivity at the nominally significant 
level (p < 0.05) in both analyses using all other UKB participants and 
individuals who were tested negative as the controls (Table 2). When 

comparing patients with COVID-19 to participants who were tested 
negative, the association of SNP rs7282236 (A/G) passed the Bonferroni 
correction cutoff (Fig. 4). This SNP had an alternative allele frequency of 
75.1% in all other UKB participants, 74.2% in those tested negative, and 
77.7% in patients with COVID-19, corresponding to an increased risk of 
COVID-19 (OR = 1.2, 95% CI: 1.06–1.36, p = 3.30 × 10-3; OR = 1.33, 
95% CI: 1.14–1.54, p = 2.31 × 10-4, respectively). Collectively, these 
association signals suggest a possible role of TMPRSS2 genetic variants 
in modulating the risk of COVID-19. 

We systematically evaluated associations between tag SNPs and 848 
phenotypes to broadly evaluate the clinical effects of these two genes. 
We performed separate analyses of males, females, and combined 
samples. Although no associations reached the genome-wide signifi-
cance cutoff, suggestive associations were identified with the Bonferroni 
correction for the number of phenotypes tested (p < 5.9 × 10-5, Fig. 5 

Fig. 1. Manhattan plots showing the associations between COVID-19 and pre-existing comorbidities. (A) Comparison between COVID-19 patients and all other UKB 
participants. The significance threshold with Bonferroni correction (p < 5.13 × 10-5) is represented by the red dashed line. Labelled phenotypes are over-represented 
in COVID-19 patients and remain nominally significant after the correction for bias in the testing sample. (B) Comparison between COVID-19 patients and those 
tested negative. Nominal significance (p < 0.05) is indicated by the red dashed line. Phenotypes over-represented in COVID-19 patients are labeled. Results based on 
males, females, and combined samples are shown with different shapes. The size of the shape is proportional to the odds ratio. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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and Tables S7 and S8 in the supporting information). For ACE2, only one 
suggestive association was identified in all analyses, namely, immune 
deficiency (p = 5.65 × 10-5) in the combined analysis. For TMPRSS2, the 
only phenotype reaching the cutoff value in both combined and female- 
specific analyses was atypical inflammatory spondylopathies (p = 4.2 ×
10-5 and 4.3 × 10-6, respectively). In males, four suggestive associations 
were identified: noninfectious gastroenteritis (p = 1.1 × 10-5), prostate 
cancer (p = 1.1 × 10-5), symptoms involving the head and neck (p = 2.8 
× 10-5), and neoplasm of uncertain behavior (p = 2.91 × 10-5). 

4. Discussion 

This study leverages the existing extensive genomic and phenotyping 
data and the recent COVID-19 test results in the UKB to identify risk 
factors for COVID-19 and to evaluate the clinical effects of genetic 
variants in key human genes on regulating SARS‑CoV‑2 infection. Our 
findings highlighted multiple pre-existing medical conditions as risk 
factors for COVID-19: dementia, Alzheimer’s disease, general cognitive 
disorders, and type 2 diabetes. In addition, genetic variants in genes 
related to SARS‑CoV‑2 infection were found to have suggestive associ-
ations with hospitalized COVID-19 and other phenotypes, such as im-
mune deficiency and prostate cancer. 

The most significant and consistent risk factors we identified are 
cognitive disorders, consistent with a few prognostic studies investi-
gating smaller clinical samples. A study of 627 patients with COVID-19 
in Northern Italy showed that dementia and its progressive stages were 
associated with mortality and that these patients commonly exhibited 
neurological symptoms of delirium and a worsening functional status 
(Bianchetti et al., 2020). In another study of 214 patients in Wuhan, 
China, neurological symptoms including acute cerebrovascular diseases, 
impaired consciousness, and skeletal muscle injury, were observed in 
36.5% of patients with COVID-19 and were more common (45.5%) in 

patients with a severe illness (Mao et al., 2020). Interestingly, dementia 
was commonly observed in inpatients with COVID-19 and associated 
with COVID-19 in models adjusted for demographic characteristics, and 
smoking and drinking status (Tables S9 supporting information). As the 
COVID-19 pandemic progresses, reports of neurological manifestations 
are increasing (Mao et al., 2020; Ding et al., 2020). These manifestations 
may be direct effects of tissue damages caused by viral infection and 
replication in the nervous system or indirect effects due to neural 
immunopathology caused by exuberant unspecific immune responses 
triggered the viruses, or a combination of both direct and indirect effects 
of the infection, manifesting the neurological complications of the sys-
temic effects of COVID-19 (Ellul et al., 2020). Key issues of SARS-CoV-2 
infection and its associated neuropathology include the routes of viral 
entry, tissue tropism, immune responses, as well as immunopathology in 
the nervous system (Wu et al., 2020). SARS-CoV-2 may enter the brain 
through the olfactory bulb. Studies of intranasal injection in mice have 
shown that the human coronavirus invades the central nervous system 
through infected white blood cells that cross the blood–brain barrier 
(Desforges et al., 2019). Additionally, SARS-CoV-2 is found in cerebral 
vascular endothelial cells that binds to angiotensin-converting enzyme 2 
receptor (Yan et al., 2020). Therefore, internal damage to the central 
nervous system may be directly caused by the virus or the systemic 
infection in the body. The detailed characteristics of inflammatory in-
filtrates must be determined to correctly interpret the mechanisms 
underlying the over-representation of cognitive disorders in patients 
with COVID-19. 

To date, data on pre-existing dementia and COVID-19 hospitalization 
are limited, although dementia affects more than 40 million people 
worldwide (Ritchie et al., 2016). As age is one of the greatest risk factors 
for dementia and cognitive disorders, the vast majority of patients with 
Alzheimer’s disease is aged 70 years or older. When the sample was 
stratified into four groups by age, we only observed associations 

Fig. 2. Forest plot for pre-existing conditions over-represented in COVID-19 patients when compared to tested negatives. Point estimates of ORs are represented by a 
filled or hollow circle, while horizontal lines indicate the 95% confidence intervals. Filled circles indicate statistical significance. Results for males, females, and 
combined samples are shown in different colors. The corresponding statistics were shown on the right. 

J. Zhou et al.                                                                                                                                                                                                                                    



Brain Behavior and Immunity xxx (xxxx) xxx

6

between an increased risk of COVID-19 and dementia or cognitive dis-
orders in groups older than 70 years, while the relatively younger age 
group (<70) did not contain a sufficient number of individuals with 
dementia or cognitive disorders (Table S10 in the supporting informa-
tion). We also observed a qualitatively similar result when our associ-
ation model adjusted by the age at 2020 (Table S11 in the supporting 
information). Based on our findings, cognitive disorders are likely risk 
comorbidities in older groups and their associated susceptibility to se-
vere COVID-19 is not merely a result of an older age. Another possible 
explanation for the finding that more individuals with mental disorders 
suffer from COVID-19 is that they are at a higher risk of viral infection 

because of their limited self-care ability and their frequent interactions 
with care providers. Overall, these results should help stimulate COVID- 
19 research on the special needs of patients with these cognitive con-
ditions. Given the different risks faced by the elderly living with 
different styles, a more comprehensive strategy with precise approaches 
of primary prevention may be desirable during this and similar 
pandemics. 

The comparison between patients with COVID-19 and participants 
who were tested negative also revealed associations of four blood bio-
markers and multiple novel comorbidities with COVID-19. Among the 
four blood biomarkers, three are indicators of cardiovascular health, 

Fig. 3. A Forest plot showing the associations between blood biomarkers and COVID-19. Point estimates of ORs are represented by the filled squares while horizontal 
lines indicate the 95% confidence intervals. Biomarkers are ordered by their statistical significance. 
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including HDL, Apo(a), and triglycerides. These findings consistently 
identified an association between deteriorating cardiovascular health (i. 
e., decreased HDL and Apo(a) levels, but increased triglyceride levels) 
and a higher risk of COVID-19 test positivity. We explored the associa-
tion between these significant risk biomarkers and a wide range of 
neurological symptoms. The three indicators related to cardiovascular 
health were associated with multiple neurological phenotypes, 
including peripheral nerve disorders, headache syndromes, migraine, 
inflammatory and toxic neuropathy, sleep apnea, and sleep disorders 
(Bonferroni-corrected p value < 0.001), while no neurological symp-
toms were associated with the level of rheumatoid factor (Table S12 in 
the supporting information). Thus, mental health is closely associated 
with indicators of cardiovascular health. While these blood biomarkers 
were measured and collected a decade before this pandemic, our results 
might indicate potential applications for more personalized COVID-19 
prevention efforts, particularly among middle-aged healthy in-
dividuals. Although we can speculate about potential connections of our 
results with the current knowledge of COVID-19, longitudinal and well- 
characterized data from patients are needed for further exploration. 

Importantly, these risk factors were identified not only by comparing 
patients with COVID-19 to the background cohort but also to individuals 
tested negative, thus correcting for sampling bias. During the study 
period, COVID-19 testing was prioritized for high-risk groups, particu-
larly when the testing capacity was limited, and some symptoms or pre- 
existing conditions (e.g., pneumonia) were overrepresented in the in-
dividuals who underwent testing due to the selection process (Atkins 
et al., 2020; Ho et al., 2004). The polymerase chain reaction test used in 
the UK had a false negative rate between 2% and 29% on initial testing 
(Watson et al., 2020). The correction of this bias is critical to identify 
true COVID-19 risk factors (Griffith et al., 2020). A comparison of pa-
tients with positive and negative tests may therefore exclude other 
reasons for hospital admission for symptoms resembling COVID-19, as 
well as false negatives. Our finding of type 2 diabetes as a risk factor for a 
positive COVID-19 test is also consistent with previous studies (de 
Lusignan et al., 2020; Kumar et al., 2020). Novel risk factors that have 
not been reported in previous studies include bronchiectasis, varicose 
veins, reflux esophagitis, fracture of the clavicle or scapula, and fracture 
of the radius and ulna. These risk factors may exacerbate COVID-19 
progression, or patients with these pre-existing conditions may be 
more frequently exposed to infection. Future studies are needed to 
elucidate the underlying mechanisms of these associations. Many pre- 
existing conditions with significant associations in the comparison of 
COVID-19 patients to the rest of the UKB sample were not found to be 
significant in the comparison to those tested negative. Interpretation on 
these pre-existing conditions should be taken with caution, as the con-
trol group of those tested negative has a much smaller sample size and 
may not have enough statistical power. 

Our phenome-wide association study of ACE2 and TMPRSS2 
revealed evidence suggesting associations with COVID-19 test positivity 
and other medical conditions. None of the associations reached the 
genome-wide significance cutoff, which is consistent with very recent 
studies (Cirulli et al., 2004; Lopera et al., 2004). However, our study 
identified associations that passed the stringent Bonferroni correction 
cutoff. In terms of a direct association with COVID-19, one tag SNP in 
TMPRSS2, rs7282236, is associated with COVID-19 test positivity, 
regardless of which control group was used. A very recent study used 
exome sequencing data from 49,953 UKB subjects and 74 patients with 
COVID-19 to evaluate the contributions of rare coding variants in ACE2 
and TMPRSS2 to COVID-19, but did not find associations (Curtis, 2005). 
Our focus on common coding and regulatory variants in the almost full 
UKB cohort of participants with COVID-19 patients may have facilitated 
our novel discovery. In terms of broader clinical effects, we observed one 
association (i.e., immune deficiency) with ACE2 that met the Bonferroni 
correction cutoff. More associations were identified for TMPRSS2, 
including atypical inflammatory spondylopathies, noninfectious 
gastroenteritis, prostate cancer, symptoms involving the head and neck, 
and neoplasm of uncertain behavior. Notably, the association of 
TMPRSS2 with prostate cancer has been previously identified (Al Olama 
et al., 2014), supporting the validity of our findings. It is possible that 
these genetic variants are associated with other COVID-19-relevant 

Table 2 
List of tag SNPs at TMPRSS2 associated with COVID-19 at the nominal significance level.  

SNP Position on Chr21 REF/ALT EAF (Non/Neg/Pos) Pos vs. Non Pos vs. Neg 

OR (95% CI) p value OR (95% CI) p value 

rs7282236 41519797 A/G 0.751/0.742/0.777 1.203 (1.06,1.36)  0.0033 1.327 (1.14,1.54)  0.00023 
rs114837856 41475211 A/T 0.494/0.492/0.477 0.856 (0.76,0.97)  0.013 0.842 (0.72,0.98)  0.025 
rs56695953 41497808 A/G 0.824/0.824/0.807 0.864 (0.76,0.98)  0.027 0.874 (0.74,1.03)  0.104 
rs8134657 41521981 A/G 0.905/0.910/0.891 0.839 (0.71,0.98)  0.033 0.765 (0.63,0.94)  0.009 
rs915823 41479527 C/A 0.798/0.796/0.808 1.140 (1.00,1.29)  0.050 1.186 (1.01,1.39)  0.033 
rs35050484 41471079 A/G 0.963/0.967/0.952 0.784 (0.61,1.00)  0.050 0.681 (0.50,0.93)  0.016 
rs56379149 41531825 T/G 0.529/0.538/0.508 0.905(0.82,1.00)  0.055 0.863 (0.76,0.98)  0.018 

SNP: single nucleotide polymorphism; REF: reference allele; ALT: alternative allele; EAF: effect allele frequency (alternative allele is the effect allele); Non: non- 
positive, all other UK Biobank participant that are untested or tested negative; Neg: COVID-19 tested negative; Pos: COVID-19 tested positive; OR: odds ratio; CI: 
confidence interval. 

Fig. 4. Associations between (A) ACE2 and (B) TMPRSS2 genetic variants and 
COVID-19. Each dot is a tag SNP. SNPs associated with gene expression are 
indicated in red. The nominal significance cutoff (p < 0.05) is represented by 
the gray dashed line, while the significance threshold with Bonferroni correc-
tion for the number of SNPs tested is indicated by the red dashed line. The 
model of the longest transcript is shown at the bottom while the genic region, 
covering all transcripts, is shown as an arrow. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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phenotypes, which were not available in UK Biobank, such as specific 
immune cell types or cytokine levels. Among the analyzed hypotheses, 
the most interesting signal is the relation between genetic variants 
in TMPRSS2 and COVID-19 test positivity. It is of great interest to 
evaluate if these genetic variants are associated with different degrees of 
severity or different disease manifestations in COVID-19 patients. 

Our study has strengths and limitations. UKB is a large prospective 
cohort with extensive genomic and phenotyping information, enabling a 
hypothesis-free phenome-wide scan for COVID-19 risk factors. The 
availability of the background cohort and a subgroup of individuals who 
were tested for COVID-19 allow us to compare patients with COVID-19 
to the general population while simultaneously correcting for sampling 
bias. This relatively small sample size renders the analysis susceptible to 
collider bias. We applied two methods to adjust for collider bias and 
examined the sensitivity of our study: i) where the selected sample is 
nested within the complete UKB dataset that comprises samples 

representative of the target population, or ii) where the dataset consists 
of only the tested samples. However, it is difficult to estimate the extent 
of sample selection, and even if that parameter were known, we would 
be unable to prove that it has been fully explained by any method. 
Collider bias might also arise because of the original selection in the UK 
Biobank, which include more healthy and well-educated participants. In 
addition to pre-existing medical conditions and biomarkers, our study 
evaluated the possible role of genetic factors in COVID-19 by studying 
candidate genes. Our phenome-wide analysis of the two key genes 
related to SARS‑CoV‑2 infection also provided clinical insights into their 
biological functions. Another limitation of our study was the inability to 
provide additional information about the specific symptoms or out-
comes of the patients with COVID-19. The physical measurements, 
biomarker levels and medical conditions were either measured at 
recruitment or retrieved from medical records, and therefore they may 
not accurately reflect the current health status. To reduce the potential 

Fig. 5. Manhattan plots showing the associations between (A) ACE2 and (B) TMPRSS2 genetic variants and disease status. The significance threshold with Bonferroni 
correction (p < 5.82 × 10-5) is represented by the red dashed line. For each phenotype, only the p value from the most significant tag SNP is shown. Results for males, 
females, and combined samples are shown in different shapes. The size of the shape is proportional to the odds ratio. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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confounding effect of ethnicity, which is well-known to affect COVID- 
19-related health disparity, our analysis was restricted to participants 
of European descent, a group with the biggest sample size. Future 
studies with large sample sizes are urgently needed for other ethnicities. 
Last, our study is associative in nature and was unable to address the 
causal roles of risk factors. Our findings identified associations of an 
extensive range of pre-existing conditions and genetic variants as being 
associated with COVID-19. However, the real causal effects of risk fac-
tors on COVID-19 susceptibility are likely to vary by genetic back-
ground, lifestyle, and social connectedness and are presumably more 
complicated than indicated by our population-level screen. 

5. Conclusion 

Overall, our unbiased phenome-wide study in UK Biobank confirmed 
known and identified novel risk factors for COVID-19, including de-
mentia, Alzheimer’s disease, type 2 diabetes, blood biomarkers of car-
diovascular health, and genetic variants in TMPRSS2. These systematic 
discoveries provide insights into the management, prevention, and 
treatment of COVID-19 during future phases of the outbreak, while 
highlighting an urgent need of special protective care for patients with 
cognitive disorders. 
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