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RNA-seq is increasingly used to study gene expression of various organisms. While it provides a great opportu-
nity to explore genome-scale transcriptional patterns with tremendous depth, it comes with prohibitive costs.
Establishing a minimal sequencing depth for required accuracy will guide cost-effective experimental design
and promote the routine application of RNA-seq. To address this issue, we selected 36 RNA-seq datasets, each
withmore than 20million reads from sixwidely-usedmodel organisms: Saccharomyces cerevisiae,Homo sapiens,
Drosophila melanogaster, Caenorhabditis elegans, Mus musculus, and Arabidopsis thaliana, and investigated statis-
tical correlations between the sequencing depth and the outcome accuracy. To achieve this, we randomly chose
reads from each dataset, mapped them to the reference genomes, and analyzed the accuracy achieved with
varying coverage. Our results indicated that as low as one million reads can provide the same sequencing accu-
racy in transcript abundance (r=0.99) as N30million reads for highly-expressed genes in all six species. Because
manymetabolically and pathologically-relevant genes are highly expressed, our findingsmight be instructive for
cost-effective experimental designs in NGS-based research and also provide useful guidance to similar research
for other organisms.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Regulatory diversity in the transcriptome, such as regulatory
mutations or perturbed signaling pathways, often leads to phenotypic
or functional differences including diseases (Sul et al., 2009;
Marguerat and Bahler, 2010; Ozsolak and Milos, 2011). Characterizing
transcriptomic regulation is essential to understanding the molecular
mechanisms of basic biology and the pathogeneses of human diseases.
Over the years, many methods have been developed to study gene ex-
pression and regulation. One that has been primarily used in the past
two decades is the DNA microarray, a hybridization-based approach
(DeRisi et al., 1996; Wang et al., 2009). While insightful knowledge of
the transcriptome and its regulations has been obtained using this
method, it has several drawbacks. First, microarray analysis is an indi-
rect method that relies on probes to detect gene expression (Cassone
et al., 2007). Second, microarrays must use individual, pre-prepared
gene probes and have background, cross-reaction, and reproducibility
issues (Draghici et al., 2006; Okoniewski and Miller, 2006). Third, mi-
croarrays cannot determine unidentified genes because they rely on
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well-known, preexisting probes for detection. Finally, microarrays
have low sensitivities for lowly-expressed genes (Heller, 2002; Wang
et al., 2009).

Recently, a new method called RNA-seq has emerged as a popular
alternative to quantify mRNA abundance (Mortazavi et al., 2008;
Nagalakshmi et al., 2008). As a digital process, RNA-seq analyzes the
transcriptome by recording frequencies and alterations of transcripts
in test samples. Comparatively, RNA-seq has many advantages over
DNA microarrays. RNA-seq does not require prior knowledge of the
target sequence and its use of digital detection reduces errors that rise
from indirect probe hybridization in microarrays. Furthermore, RNA-
seq is more sensitive than microarrays with respect to measuring low-
abundance genes (Marioni et al., 2008).

However, RNA-seq'smajor disadvantage is its cost. Despite the rapid
improvement in its efficiency, RNA-seq is still too expensive formost re-
search laboratories and for routine applications. Although developing
barcodes for multiplexing samples (Smith et al., 2010; Islam et al.,
2011; Wang et al., 2011a) could decrease the cost, serious concern has
risen regarding the sufficient depth for all the individual samples se-
quenced together. While deeper sequencing generally gives a more ac-
curate picture of thewhole transcriptome, especially for geneswith low
abundance (Tarazona et al., 2011), it remains unclear if appropriately
reducing the sequencingdepth for certain purposes could reduce the se-
quencing cost and time without sacrificing accuracy.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gene.2014.12.013&domain=pdf
http://dx.doi.org/10.1016/j.gene.2014.12.013
mailto:zg27@cornell.edu
mailto:xs57@cornell.edu
http://dx.doi.org/10.1016/j.gene.2014.12.013
http://www.sciencedirect.com/science/journal/03781119
www.elsevier.com/locate/gene


83R. Lei et al. / Gene 557 (2015) 82–87
Although RNA-seq datasets have been generated for many species,
the balance between the sequencing depth and accuracy was only in-
vestigated in limited species such as chicken and bacteria (Wang et al.,
2011b; Haas et al., 2012). We conducted this research to explore the re-
lationship between sequencing depth and accuracy in various species,
aiming at providing reference points for researchers by analyzing
diverse model organisms. Interestingly, we found that, for high-
abundance genes, one million reads basically provided information of
similar quality regarding expression abundance to that of more than
30 million reads in all studied species. Implication and limitation of
our results were further discussed.

2. Materials and methods

2.1. Selection of species

Six widely studied species, Saccharomyces cerevisiae (yeast), Homo
sapiens (human), Drosophila melanogaster (fly), Caenorhabditis elegans
(worm), Mus musculus (mouse), and Arabidopsis thaliana (plant) were
selected in this project. These eukaryotes were chosen partially for
their evolutionary distances, so that one could evaluate the differences
and similarities among them and generate broader conclusions. In addi-
tion, these species aremodel organisms for the biomedical research and
have numerous accessible experimental datasets.

2.2. Data sources

We analyzed a total of 36 different RNA-seq datasets. Among them,
35 were downloaded from the National Center for Biotechnology Infor-
mation (NCBI) Sequence Read Archive (SRA) database (http://www.
ncbi.nlm.nih.gov/sra), and the remaining one (S. cerevisiae) was our
laboratory-produced dataset generated by Illumina Hi-Seq 2000 Plat-
form. The RNA-seq datasets downloaded from NCBI were all checked to
fit the following criteria: they were all single-end, selected from cDNA,
transcriptomic, and done on the platform Illumina. Of the NCBI datasets
that fit these requirements, the five largest files that had amapping accu-
racy of N65% were selected and used for all the species except for yeast
(S. cerevisiae) and plant (A. thaliana). For the yeast data, the 7 largest
files found in the NCBI, in addition to our own laboratory data (which
fits the above criteria), were used. For the plant data, the 8 largest files
found were used, and two of them had mapping accuracies of ~50%.
The genome sequence and predicted gene model files for each species
were downloaded from the species-specific databases: Saccharomyces
genome database (SGD) (Cherry et al., 1998) for S. cerevisiae, University
of California, Santa Cruz (UCSC)'s genome browser (Kent et al., 2002)
for H. sapiens and M. musculus, Wormbase (Stein et al., 2001) for
C. elegans, Flybase (Drysdale and Crosby, 2005) for D. melanogaster, and
the Arabidopsis information resource (TAIR) for A. thaliana.

2.3. Links to data

C. elegans genome sequence and gene models:
ftp://ftp.wormbase.org/pub/wormbase/species/c_elegans/sequence/

genomic/c_elegans.WS238.genomic.fa.gz; and ftp://ftp.wormbase.org/
pub/wormbase/species/c_elegans/gff/c_elegans.WS238.annotations.gff3.
gz

D. melanogaster genome sequence and gene models:
ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/current/

fasta/dmel-all-chromosome-r5.52.fasta.gz; and ftp://ftp.flybase.net/
genomes/Drosophila_melanogaster/current/gff/dmel-all-r5.52.gff.gz

M. musculus genome sequence and gene models:
http://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/
H. sapiens genome sequence and gene models:
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/
S. cerevisiae genome sequence and gene models:
http://www.yeastgenome.org/download-data/sequence
A. thaliana genome sequence and gene models:
ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/

TAIR10_gff3/TAIR10_GFF3_genes.gff
ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/

TAIR10_chromosome_files/TAIR10_chr_all.fas

2.4. Yeast growth condition and RNA-seq experiment

One set of in-house generated RNA-seq for S. cerevisiaewas included
in the study. To conduct the experiment, the wild type BY4741 (MATa,
his3Δ1, leu2Δ0, met15Δ0, ura3Δ0) strain was cultured overnight in the
YPD (yeast extract, peptone, and dextrose) medium, and transferred
into fresh YPEG (yeast extract, peptone, and glycerol) medium for full
growth. Total RNA was extracted from the yeast cells by the standard
Trizol protocol (Life Technologies, Grand Island, NY), and the mRNA was
then purified using oligo-dT DynaBeads. The cDNA sequencing library
was constructed according to the protocol described by Wang et al.
(2011a). After sequencing, the reads were mapped into S. cerevisiae ge-
nome by bowtie2 (Langmead and Salzberg, 2012) with no more than
two mismatches. The number of mapped reads per kilobase per million
(RPKM) was used to represent the expression level of each gene.

2.5. Computational analysis for the transcriptome data

The sequencing files downloaded from NCBI SRA database were ini-
tially converted from SRA format to FASTQ format using SRA toolkit
(http://www.ncbi.nlm.nih.gov/Traces/sra/?view=software). Then, the
raw data were filtered using the following criteria: (1) the number of
unknown bases (N) was no more than two for each read; and (2) the
fraction of low quality sites (Q b 5) was no more than 50% for each
read. The data that passed this quality control were then used to map
back to their respective genome sequences using bowtie2 (Langmead
and Salzberg, 2012). Only uniquely mapped reads with no more than
two mismatches were retained for further analysis. After mapping, the
counts for each gene were summarized using HTSeq (http://www-
huber.embl.de/users/anders/HTSeq/doc/overview.html). In the simula-
tion, a predetermined-sized subset of reads was randomly selected
from the original file. Using the samemapping procedure as mentioned
above, the RPKM for each gene and depth of coverage were calculated
and compared with those from original data. In-house Perl and R scripts
were developed for data analysis and graphing (available upon request).

3. Results and discussions

3.1. Pearson correlation coefficients between simulated subsets and the
original reads

To analyze the relationship between the sequencing depth and accu-
racy of themeasurement of gene expression level, we compared the ex-
pression levels (RPKM) of all genes estimated with simulated reduced
data subsets to those estimated with the original full dataset. Pearson
correlation coefficients were calculated to measure the consistency of
measurements. For each species, eight simulations were run for each
data size and the standard error (SE) of mean correlation was obtained
for each sampling.

As shown in Fig. 1, regardless of species and data size, correlation
graphs displayed a similar, nonlinear relationship between correlation
coefficients and number of reads in the selected subsets. The correlation
coefficients between simulated small-sized subsets and the original, big
data rapidly increase and then plateau at roughly 10–15% of the entire
sample size. However, more importantly, the correlation coefficients
for all sample sizes (N1 million reads) are larger than 0.99. Indeed,
aside from the yeast dataset (170 million reads), each coverage graph
displayed greater than 99.9% correlationwith only onemillion reads, in-
dicating that with this sequencing depth the relative level of transcrip-
tion can be accurately estimated for those covered genes.
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Fig. 1. Correlation coefficients of transcript abundance between the simulated reduced subsets and the original data. For each dataset, reduced subsets were generated by randomly
selecting reads from the original data. The correlation between each subset and the entire datasetwas calculated and plotted by simulated subset size (number of reads). All genes, regard-
less ofwhether they can be detected, were included in the analysis. For each species,we used the same annotation file for the original data and its derived (sampled) data, and counted the
read number for all genemodels in the annotation file. If a gene was not detected in some randomly sampled data, we marked the read number for this gene as zero. The simulation was
run 8 times for each subset size and the standard error (SE) for each dataset was calculated.
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3.2. Gene coverage for the simulated subsets of the RNA-seq data

To investigate howmanygenes can be covered by different sequenc-
ing depths, we conducted the following simulations. (Note: We defined
a gene to be covered if 10 or more reads can be reliably mapped to it.
The total gene coverage was the number of genes which satisfied this
criterion.) As described above, we randomly selected a predetermined
amount of reads, grouped them into a dataset, and calculated how
many genes were covered in that dataset. Simulations were run 8
times for each sample size to obtain themean value and SE for gene cov-
erage estimates. As shown in Fig. 2, the gene coverage increased rapidly
when the sizes of the subsets were small (e.g. b10 million reads) and
approached plateaus. The specific number of reads at which coverage
started to plateau was different among species. Unlike the correlation
coefficient of the expression level, the gene coverage never fully flat-
tened, as low-expression genes were continuing to be covered at higher
depths. In both the coverage and correlation graphs, themargin of error
in the random samplingwas negligible in comparison to the differences
between the coverage/correlation values. Combining Figs. 1 and 2, our
results reaffirm that a diminishing-return relationship exists between
sequencing depth and information regarding transcription abundance
and coverage in most RNA-seq experimental designs.
3.3. Detection efficiency for genes with various levels of transcript abundance

To understand this diminishing-return relationship between se-
quencing depth and information on transcription, we plotted the distri-
bution of reads on the genes (with genes sorted by number of reads).
Fig. 3 shows a non-uniform distribution of gene transcript level in
each species. In a one-million read sample, a significant amount of
genes are already covered due to their relatively high expression. On
the other hand, very deep coverage in sequencing may not reveal
much more information because many genes in the genome are not
expressed enough to be detected.

To further illustrate this point, we calculated the percentage of genes
that were covered in each species for the smallest set of the simulated
sample sizes (1–5 million reads). As shown in Fig. 4, for Yeast, Human,
Mouse, and Fly data, a sample of 1 million reads had roughly half of
the coverage for the entire sequenced dataset that typically includes
more than 30million reads, and sometime could be around 200million
reads (for human and mouse). The 5 million read samples had roughly
75% (or more) of the coverage of the entire sequenced samples. The
worm samples' coverage seemed to grow more slowly from ~33% cov-
erage at 1 million reads to ~50% coverage at 5 million reads.

3.4. Caveats and conclusions

Themost noticeable finding from this study is that a low sequencing
depth such as 1million reads demonstrates very similar information re-
garding transcript abundance and coverage to that of a much higher se-
quencing depth (N30 million reads) for roughly half of the expressed
genes (Fig. 4). The strength of this correlation was consistently shown
in all six examined species, with awide range of genome sizes. Our find-
ing represents a general pattern instead of just a special case, and offers
guidance for selecting the depth of RNA-seq for various organisms with
different objectives. Some extremely low-abundant genes, despite ex-
pensive sample sizes (100million ormore), may still remain uncovered
or barely covered (Wang et al., 2011b). So, direct RNA-seq is a cost-
ineffective process for analyzing these genes. To better investigate and
understand these genes, methods with certain way of enrichment be-
fore RNA-seq should be pursued.



Fig. 2. The gene coverage of various sequencing depths. For each dataset, the simulated subsets were generated by randomly selecting sequencing reads. Every gene that has 10 or more
reads is considered as covered in the simulated data. The total coverage for a subset is the number of the covered genes in that dataset. Data for each subset size was simulated 8 times to
ensure accuracy. SE was calculated and plotted for each subset.

Fig. 3.Number of reads on genes in onemillion read samples. For each species, onemillion readswere randomly drawn from the largest dataset for the species. Genes, including thosewith
zero coverage, were sorted by the number of mapped reads. The number of mapped reads in logarithmic form is indicated on the y axis. The red horizontal line indicates the number of
reads a gene needed to be considered covered (10). The vertical green and blue lines indicate the 80th and 60th percentiles, respectively, of the total number of genes for each species.
Genome sizes for Fly, Human, Mouse, Worm, Yeast, and Plant were 13,269, 26,468, 30,428, 24,831, 6575, and 27,416 genes, respectively.
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Fig. 4.Gene coveragewith small sample sizes (1 to 5million reads). For each species, the gene coverage fromdifferent datasetswas calculated at randomly drawn small subset (1–5million
reads). The coverages for five simulated datasets were averaged to produce the bar graphs; one standard error was also calculated and plotted. The left y-axis indicates howmany genes
were covered in the subset compared to the entire genome (as a decimal), while the right y-axis shows howmany genes were covered in the subset compared to the entire, large set used
in the study (N30 million reads), which is denoted on the x-axis as “All”.
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One important factor that could potentially confound the RNA-seq
accuracy is the read length. To take account of the read length bias in
our analysis, we initially picked the data with a different read length
for each species (Supplementary table S1). As observed from the error
bars of each species, the read length difference did not cause a high var-
iation for the corresponding estimates, indicating that the read length
might not affect our general conclusions. In this study, we have focused
on the single-end RNA-seq sequencing, which is dominant in thefield of
transcriptome profiling. However, we are aware that many data in the
SRA database are paired-end. To extend our understanding for this
type of data, we analyzed 24 paired-end datasets from these six species
(Supplementary Table S2). As shown in Supplementary Figs. S1 and S2,
we got the similar conclusions using the paired-end data as those in-
ferred from the single-end data.

It is worth noting that our analysis did not consider other informa-
tion of the transcriptome. For example, it is reasonable to speculate
that the requirement for minimal total reads should be increased to in-
vestigate allelic expression in diploid cells, or alternative splicing pat-
terns. And, even many genes are detected in one million reads, the
statistical power for detecting the significance of gene transcription
changes might be compromised due to relatively low sequencing
counts. Nevertheless, our results indicate that sequencing depth as
low as 1-million reads basically provided similar information of tran-
script abundance to that of more than 30 million reads for highly
expressed genes. Because genes that are important in regulatingmetab-
olism and pathogenesis of diseases usually have high abundance of
transcription, our results might enable researchers to conduct minimal
depth sequencing while achieving satisfactory accuracy.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gene.2014.12.013.
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