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Objective: Osteoarthritis (OA) and rheumatoid arthritis (RA) are both debilitating diseases that cause
significant morbidity and disability globally. This study aims to investigate the causal effects of varying
blood levels of five minerals - iron, zinc, copper, calcium, and magnesium, on OA and RA.
Design: We performed two-sample Mendelian randomization (MR) analyses to assess the associations of
five circulating minerals with OA and RA. Single nucleotide polymorphisms (SNPs) serving as genetic
instruments for the circulating mineral levels were selected from large genome-wide association studies
of European-descent individuals. The associations of these SNPs with OA and RA were evaluated in UK
Biobank participants. Multiple sensitivity analyses were applied to detect and correct for the presence of
pleiotropy.
Results: Genetically determined copper and zinc status were associated with OA, but not with RA. Per
standard deviation (SD) increment in copper increases the risk of OA (OR = 1.07, 95% CI: 1.02—1.13) and
one of its subtypes, localized OA (OR = 1.08, 95% CI: 1.03—1.15). Per SD increment in zinc is positively
associated with risks of OA (OR = 1.07, 95% CI: 1.01—1.13), generalized OA (OR = 1.18, 95% CI: 1.05—1.31),
and unspecified OA (OR = 1.21, 95% CI: 1.11-1.31). Additionally, per SD increment in calcium decreases
the risk of localized OA (OR = 0.83, 95% CI: 0.69—0.98).
Conclusions: Genetically high zinc and copper status were positively associated with OA, but not with RA.
Given the modifiable nature of circulating mineral status, these findings warrant further investigation for
OA prevention strategies.

© 2021 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction

affect approximately 0.24—1% of the population and is twice as
common in women than men’. It is a chronic autoimmune disease

Osteoarthritis (OA) and rheumatoid arthritis (RA) are two
different types of arthritis, both manifested with inflammation. OA
is the most common joint disease worldwide, affecting an esti-
mated 3.8% of the global population’. It is characterized by
degraded cartilage, moderate synovial inflammation, alteration of
bony structure, pain, and impaired mobility®. RA is estimated to
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characterized by inflammatory polyarthritis that preferentially af-
fects the small joints*. The clinical symptoms of OA and RA are
similar and sometimes difficult to distinguish, although there are
significant differences in their pathogenesis. A variety of genetic
and environmental factors have been linked to the development
and progression of these two diseases. While many of these risk
factors are difficult to change, some may be more amenable to
medical and behavioral interventions (e.g., nutrition). Poor nutrient
status in OA or RA patients has been reported, and minerals may
affect these two diseases through their cofactor roles in immune
functions and different metabolic processes in joint tissues>®°.
Minerals are a diverse group of substances constituting enzyme
complexes and participating in a variety of fundamental physio-
logical activities’. Naturally occurring minerals, such as iron (Fe),
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calcium (Ca), magnesium (Mg), copper (Cu), and zinc (Zn), have
been implicated in different inflammatory effects in both animal
and human studies® '". Zinc can function as an anti-inflammatory
agent, and clinical manifestations of zinc deficiency include growth
retardation, immune dysfunctions, increased oxidative stress, and
enhanced production of proinflammatory cytokines'>'3. Chronic
intake of a large quantity of zinc may interfere with copper ab-
sorption, reduce the levels of high-density lipoprotein cholesterol,
and impair immune responses'“. Furthermore, copper is essential
for iron absorption, and thus copper deficiency can impair iron
metabolism'°. Iron is indispensable for the immune cell prolifera-
tion, particularly that of lymphocytes, in response to infection'®.
Likely due to their close interactions, different minerals are usually
found to be associated with similar diseases. Elevated blood iron
and copper levels are positively with the risk of OA'”, while those of
calcium and magnesium are inversely associated its risk'®'?. Cop-
per and zinc have been reported to be positively correlated with
RA?°. Due to the fact that most studies were observational and may
suffer from reverse causality and residual confounding, it remains
uncertain whether these associations indicate causal relationships.

Mendelian randomization (MR), a complementary approach to
epidemiological observations, uses genetic variants as instrumental
variables and allows the investigation of whether the effect of an
exposure (i.e., circulating mineral level) on a clinical outcome is
likely to be causal. Genetic variants, which affect the absorption,
distribution, or excretion of essential minerals, may influence their
systematic status and subsequently lead to health effects related to
sub-clinical deficiency or excess. In contrast to the observed
circulating mineral levels that are results of ion—ion interactions,
genetic backgrounds, socioeconomic status, existing medical con-
ditions, and many other confounding factors, genetically predicted
circulating levels of a specific mineral represent the lifelong min-
eral status that is not influenced by other minerals or existing
diseases?!. In this work, we performed a two-sample MR study to
explore the causal associations of five circulating minerals with the
risks of OA and RA. Genetic instruments for mineral status were
obtained from existing large genome-wide association studies
(GWAS) of blood minerals in participants of European descent,
while the associations of these genetic instruments with OA and RA
were evaluated in the UK Biobank??. Additionally, sex-stratified MR
analysis was performed to examine sex differences in the causal
effects.

Method

This study is reported as per the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) guideline (S1
STROBE-MR Checklist). UK Biobank has ethics approval from the
North West Multi-Centre Research Ethics Committee (11/NW/
0382). Appropriate informed consent was obtained from partici-
pants. Data for this work were obtained from UK Biobank under
approved application (ID 48818). This study utilizes a subset of
unrelated White British individuals with high-quality genotype
data in order to minimize the influence of diverse population
structure within UK Biobank.

Genetic instruments for the blood minerals

Single nucleotide polymorphisms (SNPs), serving as genetic
instrumental variables for each blood mineral status (i.e., iron,
copper, zing, calcium, and magnesium), were selected from recent
large GWAS in samples of European descent. SNPs included are
independent of each other (r? < 0.01). We selected three genetic
instruments for systemic iron status. These three genetic in-
struments are related to all four biomarkers of systemic iron status

in a consistent manner: elevated blood iron, ferritin, and transferrin
saturation, and decreased transferrin levels®>>?“. All three of these
SNPs were independent and explained approximately 3.8% of the
variation in blood iron, and the mean F-statistic was 629%°. We used
six calcium-associated genetic variants, which altogether explained
0.37% of the variance for blood calcium levels, and the mean F-
statistic was 67°°. We selected six SNPs that were significantly
associated (P < 5 x 1078) in published GWAS with blood magne-
sium levels in the joint analysis of the discovery (N = 15,366 in-
dividuals) and replication (N = 8,463 individuals) cohorts®’. These
six SNPs explained 1.62% of the variance in blood magnesium levels,
and the mean F-statistic was 64. The genetic variants for erythro-
cyte copper and zinc levels were derived from the Queensland
Institute of Medicine's twins and their families (N = 2,603)%%.
Collectively, we selected two significant SNPs (P < 10~19) associated
with blood copper concentration, which accounted for 5% of the
phenotypic variance for copper, and the mean F-statistic was 62.
For zinc, two SNPs were selected as instrumental variables,
explaining 4.59% variance for its concentration, and the mean F-
statistic was 61. We excluded X-linked SNP rs4826508 to avoid
invalid instruments because its different allele frequencies in male
(0.89) and female (0.79) are statistically significant. Summary-level
data (beta coefficients and standard errors) for the associations of
the selected SNPs with each mineral from different GWAS cohorts
were listed in Table 1.

Ascertainment of osteoarthritis and rheumatoid arthritis

The associations of selected genetic instruments with OA and RA
were estimated in UK Biobank. Diagnosed diseases status was
recorded in the hospital episode statistics as the International
Classification of Diseases (ICD) codes. We mapped these ICD codes
to the phecode grouping system, which merges related codes into
relatively independent and clinically meaningful groups. The phe-
code system provides a scheme to automatically define case and
control status for each phecode by excluding participants with
similar or potentially overlapping disease states from the corre-
sponding control group®’. The phecode 740 was used for the
identification of OA (N = 36,612 cases; 274,387 controls), while the
phecode 714.1 was used for RA (N = 2,547 cases; 308,452 controls).
In addition, the phecodes of 740.1, 740.2, and 740.9 were used for
identification of OA subcategories: localized (N = 30,741 cases;
280,258 controls), generalized (N = 5,617 cases; 305,382 controls),
and unspecified (N = 9,949 cases; 301,050 controls), respectively?°.

All analyses were restricted to participants of genetically Euro-
pean descent to maintain consistency with the European samples
used to obtain genetic instruments for circulating mineral status.
We quality-controlled and filtered the UK Biobank dataset by
removing individuals whose genetic ancestry is not Caucasian, or
who are not included in the genetic principal component analysis,
or who have sex chromosome aneuploidy. To avoid bias from
related individuals, one participant from each pair of relatives was
excluded based on a kinship coefficient of >0.0884. Logistic
regression analysis was performed for each instrument SNP sepa-
rately across all OA and RA phecodes, adjusting for age, sex, geno-
typing array, assessment center, and the first ten genetic principal
components. Genetic principal components were included to
explicitly account for possible population stratification. They have
been pre-calculated based on selected genome-wide genotype

markers?Z.

Statistical analysis for MR estimates

The estimates of the causal effect were obtained using the in-
verse variance-weighted (IVW) method. Effect estimates were
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SNP Effect allele  Baseline allele ~ Chr  Closest gene % variance explained  F-statistic ~ EAF Beta*  SE P

3 SNPs for iron status from GWAS by Gill, Dipender, et al. (Nt = 48,972)

rs1800562 A G 6 HFE 1.30 645 0.067 0.328 0.016 2.72 x 1077
rs1799945 G C 6 HFE 0.90 445 0.15 0.189 0.010 1.10 x 10°%!
rs855791 G A 22 TMPRSS6 1.60 796 0.554 0.181 0.007 1.32 x 10713
8 SNPs for calcium status from GWAS by O'Seaghdha, Conall M, et al. (Nt = 61,079)

rs1801725 T G 3 CASR 0.50 307 0.15 0.071 0.004 9 x 10756
rs1570669 G A 20 CYP24A1 0.06 37 0.66 0.018 0.003 9x 10712
rs1550532 C G 2 DGKD 0.06 37 0.31 0.018 0003 8x10°'
rs780094 T C 2 GCKR 0.05 31 0.42 0.017 0.003 1x10°1°
157481584 G A 11 CARS 0.06 37 0.3 0.018 0.003 1x10°1°
rs7336933 G A 13 RPS28P8, VWAS-AS1 0.05 31 0.15 0.022 0.004 9x10°1°
rs10491003 T C 10 LINC00709 0.05 31 0.09 0.027 0.005 5x107°
rs17711722 T C 7 GTF2IP5, RNU6-912P 0.04 24 0.47 0.015 0.003 8 x 107°°

6 SNPs for magnesium status from GWAS by Meyer, Tamra E., et al. (Nt = 23,829)

154072037 T C 1 MUC1 0.57 136 0.54 0.01 0.001 2.0 x 10736
157965584 A G 12 ATP2B1 0.25 60 0.71 0.007 0.001 1.1 x 10716
rs3925584 T C 11 DCDC5 0.25 60 0.55 0.006 0.001 52 x 1071¢
rs11144134 C T 9 TRPM6 0.23 55 0.08 0.011 0.001 82 x 107"
rs13146355 A G 4 SHROOM3 0.19 45 0.44 0.005 0.001 6.3 x 10713
15448378 A G 3 MDS1 0.13 30 0.53 0.004 0.001 1.3 x 1078
2 SNPs for copper status from GWAS by Evans, David M., et al. (Nt = 2,603)

rs1175550 G A 1 SMIM1 145 38 0.198 0.032 5.03 x 1071°
152769264 G T 1 SELENBP1 3.15 85 0.313 0.034 263 x 10720
2 SNPs for zinc status from GWAS by Evans, David M, et al. (N = 2,603)

rs1532423 A G 8 CA1 1.77 47 0.178 0.026 6.40 x 10712
152120019 T C 15 PPCDC 2.82 75 0.287 0.033 1.55 x 10718

SNP single nucleotide polymorphism, Chr: chromosome, EAF: effect allele frequency, SE: standard error.
" The beta coefficient of the effect-increasing allele. Their units are pmol/L for iron, mg/dl for calcium, mmol/L for magnesium, copper, and zinc.
 The sample size of the initial GWAS from which the genetic variants were selected.

Blood minerals-associated SNPs used as genetic instruments in the Mendelian randomization analyses

expressed as odds ratios (OR) per one standard deviation (SD)
increment in the blood mineral level. Several sensitivity analyses
were performed to check and correct for the presence of pleiotropy
among genetic instruments. First, we calculated Cochran's Q sta-
tistic, with which a P-value < 0.05 indicates the presence of het-
erogeneity>®>!. If there was no evidence of heterogeneity based on
the Q statistic, a fixed-effects model was used in the IVW MR
estimation. If there was substantial heterogeneity, we moved to a
random-effects IVW method that allows all SNPs to exhibit
balanced horizontal pleiotropy. Moreover, for minerals that have
three or more genetic instruments, the weighted median (WM) MR
and MR-Egger methods were applied. The WM MR approach is able
to provide consistent effect estimates when more than half of the
genetic instruments are valid>?. The MR-Egger method provides an
intercept test for the presence of unbalanced horizontal pleiotropy,
and it also offers an unbiased estimate of the causal effects while
taking into account the pleiotropy>. All the analyses were con-
ducted using the MendelianRandomisation>* and TwoSampleMR>*
packages and the R programming language.

Results

Genetically predicted higher copper and zinc status was posi-
tively associated with OA, but not with RA (Fig. 1). The ORs of OA
were 1.07 (95% CI, 1.02—1.13; P = 0.01) and 1.07 (95% CI, 1.01-1.13;
P = 0.02), per one SD increment in erythrocyte copper and zinc
levels, respectively. Cochran Q tests did not find evidence of het-
erogeneity (Supplementary Table 1). The associations of calcium,
iron, and magnesium levels with OA did not reach the significance

Osteoarthritis
and Cartilage

level at P < 0.05. On the other hand, genetic predisposition to high
circulating levels of all these blood minerals showed no significant
associations with RA. Detailed analysis on the subcategories of OA,
including localized, generalized, and unspecified OA, unraveled
evidence of causal associations with copper, zinc, and calcium
(Fig. 2, Supplementary Table 2). Per SD increment in copper is
associated with increased risks of localized OA (OR = 1.08, 95% CI:
1.03—1.15, P = 0.003). Per SD increment in zinc is positively asso-
ciated with risks of generalized OA (OR = 1.18, 95% CI: 1.05—1.31,
P = 0.014), and unspecified OA (OR = 1.21, 95% CI: 1.11-1.31,
P = 0.0002). In contrast to the risk-increasing effect of copper and
zing, per SD increment in calcium decreases the risk of localized OA
(OR = 0.83, 95% CI: 0.69—0.98, P = 0.021). For all these estimates,
Cochran Q tests did not find evidence of heterogeneity. Addition-
ally, for the effect of calcium on localized OA, the intercept test in
MR-Egger did not find evidence of unbalanced pleiotropy, and the
WM MR also revealed a significant estimate (OR = 0.84, 95% ClI:
0.71-0.98, P = 0.042).

We further performed sex-stratified IVW MR analysis to identify
sex-specific causal effects of these five minerals. That is, their MR
estimates are significant only in one sex group, but not in the other
or the sex-combined sample. In males, per SD increment in serum
iron is associated with increased risk of unspecified OA (OR = 1.27,
95% CI: 1.05—-1.54, P = 0.013), but serum calcium is negatively
associated with the risk of OA (OR = 0.67, 95% CI: 0.46—0.98,
P = 0.038), RA (OR = 0.35, 95% CI: 0.14-0.86, P = 0.02) and
generalized OA (OR = 0.35, 95% CI: 0.13—0.93, P = 0.035). No sex-
specific effects were found for copper, zinc, and magnesium. All
these sex-specific causal estimates do not have indications of
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Exposure Case Control OR (95% CI) p value
Cu 35,484 265,311 HH 1.07(1.02,1.13) 0.01
2,470 294,447 —s— 1.01(0.84,1.23) 0.87
Zn 36,093 270,433 H 1.07(1.01,1.13)  0.02
2,514 300,064 —a— 0.96(0.75,1.01) 0.75
Ca 34,492 258,714 —a— 0.87(0.76,1.01) 0.06
2,411 286,995 —a——— 0.73(0.46,1.14) 0.16
Fe 35,799 268,352 —a— 1.11(0.96,1.28) 0.15
2,494 297,755 —a— 0.98(0.77,1.25) 0.85
Mg 27,016 202,477 —a— 1.04(0.83,1.32) 0.71
1,908 224,657 ¢ = 1 0.96(0.56,1.65) 0.87
—=— Osteoarthritis 05 Odd1S'ORaﬁO 1

—as— Rheumatoid arthritis

A forest plot showing associations between genetically determined levels of minerals and OA or RA based

on IVW MR analysis. The odds ratios (ORs) with their 95% confidence intervals (Cls) are scaled to 1-SD 6' "
increase in blood mineral level. The case and control numbers include only individuals with complete ge- steoarthrms
notype data for all genetic instruments of a mineral, and therefore they vary slightly across minerals. and Cartllage
Complete MR results are provided in Table S1.

Phecode 95% CI p value QP value
* Zn
e Cu | 1.05(0.99-1.11)  0.075 0.667
Osteoarthritis; e Ca
localized —_— 1.08 (1.03-1.15) 0.003 0.704
0.83 (0.69-0.98) 0.021 0.288
1.18 (1.05-1.31) 0.014 0.759
Osteoarthritis;
generalized 1.13 (1.00-1.26) 0.062 0.787
0.93 (0.62-1.23) 0.619 0.831
1.21 (1.11-1.31) 0.0002 0.695
R
Osteoarthritis;
—_— s
unspecified 1.07 (0.97-1.17) 0.182 0.378
0.87 (0/59-1.15) 0.330 0.162

0.7 0.8 0.9 1.0 151 1.2 1.3
Odds Ratio

A forest plot showing associations between three minerals and three OA subcategories based on MR

analysis. The causal estimates are from IVW MR and have no indications of pleiotropy. The odds ratios 6’ "
(ORs) with their 95% confidence intervals (Cls) are scaled to 1-SD increase in blood mineral level. Complete steoarthrltls
MR results between all five minerals and the three OA subcategories are provided in Table S2. No sig- and Car’ulage
nificant associations were found for iron or magnesium.

Please cite this article as: Zhou ] et al., Genetically predicted circulating levels of copper and zinc are associated with osteoarthritis but not with
rheumatoid arthritis, Osteoarthritis and Cartilage, https://doi.org/10.1016/j.joca.2021.02.564




J. Zhou et al. / Osteoarthritis and Cartilage Xxx (XXXX) XxX 5

heterogeneity across genetic instruments (Supplementary Table 3).
We additionally performed a sensitivity analysis without adjust-
ment for sex, and the results showed no difference in the signifi-
cance of MR associations when compared to that with adjustment
for sex.

Discussion

In this study examining the causality of five circulating minerals
(i.e., iron, calcium, magnesium, zinc, copper) on OA and RA, we
found that genetically predicted high levels of copper and zinc were
positively associated with OA, but not RA. There was some evidence
supporting a causal role of iron and calcium on OA, especially in
males. No causal associations were found for RA, except a sugges-
tive protective effect of calcium in males.

Across combined and sex-stratified analyses, we found that
copper, zing, and iron increase, while calcium decreases the risks of
OA and/or its subtypes. Of note, the effects of iron and calcium on
OA were also reported in two independent MR studies*®>’”. Among
these minerals, zinc has the best-elucidated mechanism®3. OA is
primarily characterized by cartilage destruction, with the extra-
cellular matrix degraded by zinc-dependent matrix-degrading
enzymes (e.g., MMP3, MMP9, MMP12, MMP13, and ADAMTS5). In
human cell lines and mouse models, the influx of zinc into chon-
drocytes upregulates a zinc-activated transcription factor, MTF1,
which then induces expression of matrix-degrading enzymes,
causing cartilage destruction®. For iron, a longitudinal cohort
study observed that increased serum ferritin is associated with
symptomatic knee OA incidence and severity in males>®. Mecha-
nistically, iron overload in a murine model of hereditary hemo-
chromatosis enhances the expression of MMP3 and is associated
with accelerated OA progression under mechanical stress*’. These
are consistent with our male-specific MR result of iron on OA. For
copper, few published studies examined its effects on OA. We only
found one small study reporting elevated plasma and synovial
copper concentrations in OA patients when compared to healthy
controls'”, but their pathological roles are still elusive. In contrast to
the risk-increasing effect of the other three minerals, calcium is
protective against OA in our MR results, especially in men. In a
previous cross-sectional study, serum calcium concentration was
inversely associated with knee OA'®, but a null association was also
reported*’. A randomized controlled trial showing the benefit of
vitamin D supplements on knee OA also found that the serum
calcium level increased after treatment?’. All of these existing
studies suggest that blood minerals play important roles in the
etiology of OA. Our study supports some minerals as targets of
intervention for preventing OA, especially zinc, copper and iron. It
also demonstrates that not all minerals associated with OA in
observational research are causal, advising against their usage in
clinical prevention. Overall, our study pinpoints the prominent
roles of blood minerals in the pathogenesis of OA, calling for further
confirmative and mechanistic studies.

RA is an autoimmune disease of unknown etiology, and it is
mostly characterized by symmetric polyarticular inflammation of
the synovial membrane that affects the joints of the hands, wrists,
and feet**>. Inflammatory processes in the bone near the joints, as
well as in bone erosions and large cysts around the joint, can
decrease the mineral content of the bone. Intakes of vitamin D,
calcium, and other nutrients, including iron and zinc, which are
needed to build healthy bones, prevent the development of RA**, In
recent years, many studies have investigated the possible roles of
micronutrients in the etiology and pathogenesis of RA. However,
findings on the association between different serum mineral status
and the RA risk are still conflicting and inconclusive'”*>. A recent
meta-analysis showed that increased serum level of copper and

decreased serum level of zinc are associated with the disease ac-
tivity in RA patients®. In light of potential residual confounding
and reverse causation bias, large MR studies are needed to deter-
mine whether mineral status might influence the risk of RA.
Nevertheless, our present MR findings do not support the causal
roles of these minerals in the development of RA. They probably
support the hypothesis that minerals are altered by some immu-
nocytokines as a defense response against RA*’. Consistently,
several studies reported that the causes of plasma mineral changes
in RA might not be a result of a specific deficiency/excess from
dietary imbalances, but a result of the inflammatory status regu-
lated by immunoregulatory cytokines*®, Our genetically informed
approach for causal inference may help distinguish the etiology of
OA and RA, offering distinct and effective means of prevention.
While dietary or clinical interventions to modify circulating mineral
levels are promising prevention strategies for OA, they may not be
effective for RA.

This study, based on a large prospective cohort, evaluated the
causality of five circulating minerals on OA and RA. In order to
obtain unbiased estimates of causality, we applied multiple MR
methods and sensitivity analyses to evaluate potential bias due to
pleiotropic effects of genetic instruments. For all our findings, there
is no evidence of heterogeneity or pleiotropy. However, we recog-
nized that a full verification of the assumptions for genetic in-
struments is difficult, particularly in assessing canalization and
pleiotropic effects. It is important to note that our study also has
some limitations. One limitation is about statistical power. We
performed a power calculation for MR analysis based on the current
case and control numbers and the amount of variance explained by
selected genetic instruments (Supplementary Table 4)*°. Since the
number of RA cases is much smaller than that of OA cases, our
statistical power to detect an effect on RA is much lower. On the
other hand, the genetic instruments for each mineral explain a
relatively small amount of phenotypic variance, ranging from 8% for
zinc to 0.37% for calcium. Our analysis for magnesium and calcium
are under power. Future studies with larger case sizes are needed
for RA, magnesium, and calcium. Another limitation is that the MR
approach only estimates the population average effect of blood
minerals. Gene-environment interaction studies are warranted to
examine if their effects vary across population subgroups defined
by genetic or phenotypic profiles. Furthermore, collider bias may
arise due to sample selection in the UK Biobank, which only had a
5% participation rate, although related effects are likely to be
modest°’. Genetic instruments approximate the average effect of
an exposure over the life course, while the true biological effects of
blood minerals could vary by life stages and be more complex than
that indexed in our study. Finally, it is important to note that UK
Biobank is an older cohort of European ancestry, so results may
differ in younger populations or in other ethnic backgrounds.

Our MR study suggests that genetic predisposition to physio-
logically higher circulating copper and zinc status may increase the
risk of OA but has no effects on RA. High levels of blood calcium
decrease the risk of localized OA. The associations between high
iron status and OA risk were only significant in males. Given that
mineral status is a modifiable trait, these results may have clinical
and public health implications but need confirmation by further
large MR studies and clinical trials.
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