
Journal of Neuroimmunology 379 (2023) 578105

Available online 11 May 2023
0165-5728/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A metabolome-wide Mendelian randomization study prioritizes potential 
causal circulating metabolites for multiple sclerosis 

Angela Ge a,b,1, Yitang Sun b,1, Thaddaeus Kiker b,c, Yanjiao Zhou d, Kaixiong Ye b,e,* 

a Lower Merion High School, Ardmore, PA, USA 
b Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA 
c Sunny Hills High School, Fullerton, CA, USA 
d Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA 
e Institute of Bioinformatics, University of Georgia, Athens, GA, USA   

A R T I C L E  I N F O   

Keywords: 
Mendelian randomization 
Metabolome 
Metabolites 
Multiple sclerosis 

A B S T R A C T   

To prioritize circulating metabolites that likely play causal roles in the pathogenesis of multiple sclerosis (MS). 
Two-sample Mendelian randomization analysis was performed to estimate the causal effects of 571 circulating 
metabolites on the risk of MS. Genetic instruments for circulating metabolites were obtained from three previous 
genome-wide association studies (GWAS) of the blood metabolome (N = 7824; 24,925; and 115,078; respec
tively), while genetic associations with MS were from a large GWAS by the International Multiple Sclerosis 
Genetics Consortium (14,802 cases and 26,703 control). The primary analysis was performed with the multi
plicative random-effect inverse variance-weighted method, while multiple sensitivity analyses were conducted 
with the weighted median, weighted mode, MR-Egger, and MR-PRESSO. A total of 29 metabolites had suggestive 
evidence of causal associations with MS. Genetically instrumented levels of serine (OR = 1.56, 95% CI =
1.25–1.95), lysine (OR = 1.18, 95% CI = 1.01–1.38), acetone (OR = 2.45, 95% CI = 1.02–5.90), and acetoa
cetate (OR = 2.47, 95% CI = 1.14–5.34) were associated with a higher MS risk. Total cholesterol and phos
pholipids in large very-low-density lipoprotein were associated with a lower MS risk (OR = 0.83, 95% CI =
0.69–1.00; OR = 0.80, 95% CI = 0.68–0.95), but risk-increasing associations (OR = 1.20, 95% CI = 1.04–1.40; 
OR = 1.13, 95% CI = 1.00–1.28) were observed for the same two lipids in very large high-density lipoprotein. 
Our metabolome-wide Mendelian randomization study prioritized a list of circulating metabolites, such as serine, 
lysine, acetone, acetoacetate, and lipids, that likely have causal associations with MS.   

1. Introduction 

Multiple sclerosis (MS) is an autoimmune disease in the central 
nervous system, characterized by neuroinflammation, demyelination, 
and neurodegeneration. While the exact causes of MS are still unknown, 
some lifestyle and environmental risk factors have been relatively well- 
established, such as female sex, smoking, Epstein–Barr virus (EBV) 
infection, low vitamin levels, and obesity (Olsson et al., 2017). Metab
olomics is a powerful approach to identifying metabolites that differ
entiate MS patients from healthy controls, revealing diagnostic or 
prognostic biomarkers, potential therapeutic targets, and insights into 
the pathogenesis (Bhargava and Anthony, 2020; Zahoor et al., 2021). 
Metabolites in various metabolic pathways have been implicated in MS, 

such as higher plasma levels of acetoacetate, acetone, and 3-hydroxybu
tyrate in energy metabolism (Cocco et al., 2016), higher circulating 
levels of gamma-glutamyl amino acids and lysine in amino acid meta
bolism (Bhargava et al., 2017; Moussallieh et al., 2014), elevated serum 
levels of uridine in nucleotide metabolism (Lazzarino et al., 2017), and 
altered circulating profiles of lipids and lipoproteins in lipid metabolism 
(Lorincz et al., 2022). Of note, lipoproteins are soluble complexes of 
proteins and lipids, with a hydrophilic membrane of phospholipids, free 
cholesterol, and apolipoproteins surrounding a hydrophobic core of 
cholesteryl esters and triglycerides. Based on their size, constituent 
lipids and apolipoproteins, lipoproteins can be divided into seven clas
ses, chylomicrons, chylomicron remnants, very low-density lipoproteins 
(VLDL), VLDL remnants, low-density lipoproteins (LDL), high-density 
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lipoproteins (HDL), and lipoprotein (a). These lipoprotein classes could 
be further divided into subclasses based on their size and density 
(Feingold, 2022). A metabolomics study, comparing relapsing-remitting 
MS patients (RRMS) to age- and sex-matched healthy volunteers, found 
that cholesterol, phospholipids, and triglycerides are elevated in the 
larger subclasses of VLDL and HDL (Gafson et al., 2018). However, the 
causality of these lifestyle, environmental, or metabolomic risk factors is 
hard to establish due to the inherent limitations of observational asso
ciations, especially in case-control studies, such as reverse causation and 
residual confounding (Olsson et al., 2017). 

Mendelian randomization (MR) is a genetic epidemiology method 
that leverages genetic effects to enable the inference of causality be
tween an exposure and an outcome. It selects genetic variants with 
known effects on the exposure of interest. The random allocation of the 
two alleles at a genetic variant across generations mimics the random 
assignment of placebo or treatment to participants in a randomized 
controlled trial (Davies et al., 2018). MR has been applied to MS, 
providing evidence for causal roles of high BMI (Harroud et al., 2021a; 
Harroud et al., 2021c; Jacobs et al., 2020; Vandebergh et al., 2022), 
increased interleukin-6 signaling (Vandebergh, Becelaere, 2022), and 
low vitamin D (Harroud et al., 2021a; Jacobs et al., 2020). On the other 
hand, MR did not support the causal roles of uric acid (Niu et al., 2020), 
leptin (Harroud et al., 2021a), adiponectin (Harroud et al., 2021a), and 
depression (Binzer et al., 2021; Harroud et al., 2021b). A systemic MR 
study of 65 possible risk factors for MS revealed robust evidence of 
causality for four of them, high childhood and adult BMI, low vitamin D, 
and low physical activity. It also found suggestive evidence for type 2 
diabetes, waist circumference, body fat percentage, age of puberty, and 
high-density lipoprotein cholesterol (HDL-C) (Yuan et al., 2021). 
Although large-scale MR analysis is a powerful approach to prioritizing 
causal risk factors for MS, no such study has been applied to all me
tabolites in a metabolome. Taking advantage of the recent large genome- 
wide association studies (GWAS) of human blood metabolites measured 
by metabolomics platforms (Kettunen et al., 2016; Richardson et al., 
2022; Shin et al., 2014), we performed a metabolome-wide MR study to 
prioritize causal circulating metabolites for MS. 

2. Methods 

2.1. Data sources 

Genetic associations with circulating metabolites were obtained 
from three GWAS of human blood metabolome. Their summary statistics 
were compiled and made available through the MRC IEU OpenGWAS 
project (Elsworth et al., 2020; Hemani et al., 2018), and the three GWAS 
were labeled as met-a (Shin et al., 2014), met-c (Kettunen et al., 2016), 
and met-d (Richardson et al., 2022). All three GWAS were performed in 
participants of European ancestry. The met-a study covers 452 metab
olites and 7824 participants, the met-c study 123 metabolites and up to 
24,925 participants, and the met-d study 249 metabolites and 115,078 
individuals. For met-a, which performed GWAS on raw phenotypes, we 
rescaled SNP effect sizes to one standard deviation (SD) of the circu
lating metabolite level (Shin et al., 2014). The effect sizes in met-c and 
met-d were already standardized to SD because of the inverse rank- 
based normal transformation of phenotypic values before GWAS (Ket
tunen et al., 2016; Richardson et al., 2022). Genetic associations with 
MS in Europeans were obtained from the discovery GWAS by the In
ternational Multiple Sclerosis Genetics Consortium (14,802 cases and 
26,703 control). We obtained access to the summary statistics on the 
designated website (https://nettskjema.no/a/imsgc-data-access#/). We 
further confirmed that the same summary statistics were available on 
the OpenGWAS project with a dataset ID of ieu-b-18. 

2.2. Selection of instrumental variables 

Two significance thresholds (P < 5 × 10− 8 and P < 1 × 10− 6) were 

used to select single nucleotide polymorphisms (SNPs) as instrumental 
variables (IVs). The genome-wide significance threshold of P < 5 × 10− 8 

is commonly used for the selection of genetic instruments to fulfill the 
relevance assumption of MR. We additionally used the suggestive sig
nificance threshold of P < 1 × 10− 6 to include more metabolites in the 
analysis, which would otherwise be excluded due to the lack of genetic 
instruments under the stringent genome-wide significance cutoff. For 
other metabolites, the usage of the less stringent significance threshold 
increases the number of genetic instruments and offers an opportunity to 
assess the robustness of the MR estimates using different sets of genetic 
instruments. However, we would like to emphasize that these two sets of 
genetic instruments do not represent independent replications due to 
their overlaps. We used linkage disequilibrium (LD) clumping (r2 <

0.001 within a 10 Mb window) to identify independent SNPs. For 
exposure-associated SNPs not present in the MS GWAS dataset, we 
searched for proxy SNPs in high LD (r2 ≥ 0.8). A threshold of F-statistics 
>10 indicates strong instruments (Pierce et al., 2011). The effects of IVs 
on exposure and outcome were harmonized to rule out strand mis
matches and ensure alignment of effect sizes. All IV selection, clumping, 
and harmonization were implemented in R v4.2.1 using the TwoSam
pleMR package (v0.5.6) (Hemani et al., 2018). 

2.3. Statistical analyses 

We performed two-sample MR analysis only for metabolites that 
have at least three independent genetic instruments in order to apply 
statistical testing of and correction for potential pleiotropy. The primary 
analysis utilized the multiplicative random-effect inverse variance- 
weighted (IVW) method, which used a meta-analysis approach to 
combine Wald estimates for each SNP and obtain an overall estimate of 
the effect of each metabolite on MS (Burgess et al., 2013). The Cochran’s 
Q test was used to determine the homogeneity within the causal esti
mates of different SNPs (Greco et al., 2015). Sensitivity analyses were 
performed with MR-Egger (Bowden et al., 2015), weighted median 
(WME) (Bowden et al., 2016), and weighted mode (WMO) methods 
(Hartwig et al., 2017). The MR-Egger provides robust effect estimates in 
the presence of balanced pleiotropy. The WME method provides reliable 
estimates when at least 50% of the weight comes from valid IVs. The 
WMO method reports the effect estimate supported by the largest 
number of genetic instruments. The MR-Egger intercept test was applied 
to evaluate the presence of unbalanced horizontal pleiotropy (Bowden 
et al., 2015; Burgess and Thompson, 2017). Moreover, we applied the 
MR-PRESSO method for detecting overall horizontal pleiotropy (i.e., the 
global test), identifying specific outliers (i.e., the outlier test), and re- 
calculating effect estimates after outlier removal (Verbanck et al., 
2018). Scatter plots, forest plots, and leave-one-out plots were generated 
to visualize the relationships and the impacts of individual genetic in
struments. These sensitivity analyses aimed to ensure robustness and 
validity of the findings while accounting for potential biases due to 
pleiotropy. In addition, we applied the MR Steiger method to infer the 
direction of causality (Hemani et al., 2017). Candidate metabolites were 
defined into two groups, consistent and suggestive. The consistent group 
includes metabolites that have nominally significant (P < 0.05) and 
directionally consistent MR IVW estimates under both p-value cutoffs (P 
< 5 × 10− 8 and P < 1 × 10− 6) for genetic instruments. The suggestive 
group includes metabolites that have nominally significant MR IVW 
estimates under either p-value cutoff. Note that some metabolites only 
have genetic instruments under the less stringent cutoff of P < 1 × 10− 6. 
All analyses were conducted in R v4.2.1 using MendelianRandomization 
(v0.6.0, IVW, MR-Egger, WME, and WMO analyses) (Broadbent et al., 
2020), TwoSampleMR (v0.5.6, MR Steiger analysis, scatter plots, forest 
plots, and leave-one-out plots) (Hemani et al., 2018), and MRPRESSO 
(v1.0, MR-PRESSO analysis) (Verbanck et al., 2018). 
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2.4. Standard protocol approvals, registrations, and patient consent 

This study was conducted with previously published summary-level 
data. No individual-level data were used. 

3. Results 

Our workflow is summarized in Fig. 1. Three GWAS of human blood 
metabolome were included in our analysis, each with 452, 123, and 249 
metabolites, respectively. Metabolites with less than three genetic in
struments were excluded from our analysis. With a significance cutoff of 
P < 5 × 10− 8 for the selection of genetic instruments, we obtained MR 
results for a total of 404 metabolites (Supplementary Table 1). When we 
relaxed the significance cutoff to P < 1 × 10− 6, an additional 167 me
tabolites were included for MR analysis, reaching a total of 571 me
tabolites (Supplementary Table 2). For all the 404 metabolites included 
in analyses with both significance cutoffs, the effect estimates are highly 
concordant (Supplementary Fig. 1). A total of 29 metabolites were 
identified as potential causal for MS. Six metabolites have nominally 
significant and directionally consistent effect estimates with both sig
nificance cutoffs. Another 23 metabolites have nominally significant 
signals with one cutoff. Fourteen of these 23 only have genetic in
struments under the significance threshold of P < 1 × 10− 6. For the other 
nine that have genetic instruments under both significance thresholds, 
the MR effect estimates are directionally consistent and close to each 
other (Fig. 2). Sensitivity analyses with MR-Egger, WME, WMO, and 
MR-PRESSO revealed directionally consistent effect estimates, although 
not always reaching nominal significance. The MR Steiger test further 
supports the causal direction from the metabolite to MS, instead of the 
reverse (Supplementary Tables 1 and 2). 

Among 29 potential causal metabolites, ten are lipids in specific li
poprotein subclasses. The genetically predicted circulating levels of total 

cholesterol (OR = 0.83, 95% CI = 0.69–1.00, P = 0.045), phospholipids 
(OR = 0.80, 95% CI = 0.68–0.95, P = 0.012), and triglycerides (OR =
0.81, 95% CI = 0.66–0.99, P = 0.039) in large VLDL are associated with 
a lower risk of MS. Phospholipids in small VLDL (OR = 0.80, 95% CI =
0.60–0.95, P = 0.017) and in chylomicrons and the largest VLDL par
ticles (OR = 0.75, 95% CI = 0.65–0.98, P = 0.033) are both negatively 
associated with the MS risk. In contrast, the genetically predicted 
circulating levels of total cholesterol (OR = 1.20, 95% CI = 1.04–1.40, P 
= 0.015), phospholipids (OR = 1.13, 95% CI = 1.00–1.28, P = 0.048), 
and cholesterol esters (OR = 1.14, 95% CI = 1.01–1.28, P = 0.030) in 
very large HDL are positively associated with the risk of MS. 

Five of the 29 metabolites are amino acids. The genetically predicted 
circulating levels of serine (Fig. 3A and D, OR = 1.56, 95% CI =
1.25–1.95, P = 9.32 × 10− 5), lysine (OR = 1.18, 95% CI = 1.01–1.38, P 
= 0.041) and O-sulfo-L-tyrosine (OR = 1.15, 95% CI = 1.01–1.31, P =
0.042) are all associated with a higher risk of MS. The additional leave- 
one-out analysis for serine demonstrated that the causal estimate was 
not driven by any single SNP (Fig. 3G). The other two are gamma- 
glutamyl amino acids, and they have opposite associations. Gamma- 
glutamyl leucine is negatively (OR = 0.80, 95% CI = 0.67–0.96, P =
0.017), while gamma-glutamylphenylalanine is positively (OR = 1.22, 
95% CI = 1.04–1.43, P = 0.016) associated with the MS risk. 

Two of the six consistently significant metabolites are acetoacetate 
(OR = 2.47, 95% CI = 1.14–5.34, P = 0.021) and acetone (OR = 2.45, 
95% CI = 1.02–5.90, P = 0.046), both of which are associated with a 
higher MS risk (Fig. 3). Visual inspection of the leave-one-out plots 
suggested the potential presence of outliers of IVs for acetoacetate and 
acetone (Fig. 3H and I). However, further MR-PRESSO analysis did not 
find any significant outliers for acetoacetate (global test P > 0.05), while 
the causal estimate of acetone remained significant after removing the 
outlier SNPs (OR = 3.60, 95% CI = 1.86–6.97, P = 0.007). Another 
notable metabolite is uridine, which is positively associated with the MS 
risk (OR = 1.45, 95% CI = 1.10–1.91, P = 0.008). 

4. Discussion 

Our metabolome-wide MR study, the first of its kind for MS, priori
tized a list of 29 circulating metabolites that likely have causal associ
ations with the risk of MS. Our results highlighted metabolites in lipid 
metabolism (e.g., cholesterol and phospholipids in large VLDL and very 
large HDL), amino acid metabolism (e.g., serine and lysine), and energy 
metabolism (e.g., acetoacetate and acetone). 

Altered lipid metabolism is well-known in MS patients (Lorincz et al., 
2022). When comparing RRMS patients to age- and sex-matched con
trols, a metabolomics study found that cholesterol, phospholipids, and 
triglycerides are elevated in the larger subclasses of VLDL and HDL 
(Gafson et al., 2018). Two previous MR studies examined the causal 
roles of HDL-C, low-density lipoprotein cholesterol (LDL-C), and tri
glycerides in MS. Using GWAS of blood lipids that are independent of 
our GWAS of metabolomics, they found that HDL-C is positively asso
ciated with the MS risk, while no significant effects were found for LDL-C 
and triglycerides (Almramhi et al., 2022; Yuan et al., 2021). Our results 
consistently revealed that total cholesterol, cholesterol esters, and 
phospholipids in very large HDL are associated with a higher MS risk. 
Also, we did not find significant effects of lipids in LDL. Our study 
showed that lipids in large VLDL are associated with a lower MS risk. It is 
important to note that the previously observed elevated levels of lipids 
in the larger subclasses of VLDL in RRMS patients may be confounded by 
reserve causation, as lipid levels may respond to the progression of MS. 
Our study highlighted the importance of examining the role of lipo
protein subclasses in MS. 

Altered circulating levels of amino acids and gamma-glutamyl amino 
acids have been observed in MS patients (Bhargava and Anthony, 2020; 
Zahoor et al., 2021). A higher serum level of lysine was observed in MS 
patients when compared to healthy controls (Moussallieh et al., 2014), 
and also in MS patients who are in relapse in comparison to those that 

P P

r
r

P P

Fig. 1. Flowchart of the MR study. 
MR: Mendelian randomization; GWAS: genome-wide association studies; SNPs: 
single nucleotide polymorphisms; IMSGC: International Multiple Sclerosis Ge
netics Consortium; IVW: inverse variance-weighted; WME: weighted median; 
WMO: weighted mode. 
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are a few months after the last relapse (Yeo et al., 2021). The pattern for 
serine is more complex. A lower plasma concentration of serine was 
observed in RRMS patients (Sylvestre et al., 2020), but a higher serum 
serine level was found in secondary progressive MS patients (Rzepinski 
et al., 2022). On the other hand, in the experimental allergic encepha
lomyelitis rat model of MS, elevated levels of both lysine and serine were 
observed in the spinal cord and the brain (Battini et al., 2018). Our MR 
analysis indicates that individuals with genetic capacities for higher 
lysine and serine are more likely to develop MS. Interestingly, it has been 
shown that EBV infection, a known risk factor for MS (Olsson et al., 
2017), upregulates the import and biosynthesis of serine in B cells 
(Wang et al., 2019). Moreover, serine is a precursor for phosphati
dylserine and sphingomyelin, both of which are key lipids in myelin and 
implicated in the demyelination process of MS (Beyer et al., 2018; Ho 
et al., 2012). Therefore, our observations of serine and lipids may be 
related. As for the two gamma-glutamyl amino acids, both gamma- 
glutamylleucine and gamma-glutamylphenylalanine were observed to 
be higher in MS patients than in healthy controls, although only gamma- 
glutamylleucine reached statistical significance. But both of them were 
significantly elevated in MS patients receiving vitamin D supplementa
tion (Bhargava et al., 2017). Our MR analysis suggests that gamma- 
glutamylleucine increases, while gamma-glutamylphenylalanine de
creases, the risk of MS. Our results call for future studies into the effects 
of these amino acids before the onset of MS. 

Disrupted nucleotide metabolism and energy metabolism are 
commonly observed in MS (Bhargava and Anthony, 2020, Zahoor et al., 

2021). Consistent with our MR result that individuals with a higher 
genetic capacity for uridine have a higher MS risk, it has been observed 
that the serum uridine level is higher in MS patients (Lazzarino et al., 
2017). Similarly, previous case-control studies observed that MS pa
tients have elevated levels of acetoacetate and acetone in the plasma and 
the cerebrospinal fluid (Cocco et al., 2016; Kim et al., 2017). Our MR 
analysis supports the causal roles of these metabolites in the develop
ment of MS. Notably, the higher circulating levels of ketone bodies (i.e., 
acetoacetate and acetone) may reflect a protective shift in energy 
metabolism in MS patients, and ketogenic diets have shown suggestive 
benefits for MS patients (Lin et al., 2022). It is of great interest to 
investigate the roles of ketone bodies in the development of MS, in 
addition to its treatment. 

The present study has multiple strengths. First, the two-sample MR 
study design mitigates biases from residual confounding and reverse 
causation in observational association studies. Second, we examined an 
extensive list of metabolites to systematically investigate their causal 
roles in MR risk. Third, two thresholds (P < 5 × 10− 8 and P < 1 × 10− 6) 
were applied to select genetic instruments, and results are consistent 
across the two analyses. All metabolites examined have strong genetic 
instruments (all F-statistics >10), mitigating possible biases from weak 
instruments. Fourth, we applied six MR methods to assess the robustness 
of causal associations and effect directions, including IVW with a mul
tiplicative random-effects model, MR-Egger, WME, WMO, MR-PRESSO, 
and MR Steiger. Fifth, most of our identified metabolites have been 
previously associated with MS status or severity in traditional 

Fig. 2. Metabolites with significant MR estimated effects on the risk of MS. 
Odds ratios and 95% confidence intervals are scaled to per genetically predicted 1 SD increase in circulating metabolite levels. MR: Mendelian randomization; MS: 
multiple sclerosis; OR: odds ratios; 95% CI: 95% confidence intervals; SD: standard deviation; SNP: single nucleotide polymorphism; VLDL: very low-density lipo
proteins; HDL: high-density lipoproteins. 
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Fig. 3. MR estimated effects of three metabolites on MS. Scatter plots for serine (A), acetoacetate (B), and acetone (C) illustrate the individual SNP effects on the 
metabolite and MS and the estimated linear causal relationship between the metabolite and MS by applying four MR methods. Forest plots for serine (D), acetoacetate 
(E), and acetone (F) show the causal effect estimates based on individual SNPs and based on all SNPs using four MR methods. Leave-one-out plots for serine (G), 
acetoacetate (H), and acetone (I) evaluate whether any SNP is driving the causal effect. MR: Mendelian randomization; MS: multiple sclerosis; IVW: inverse variance- 
weighted; WME: weighted median; WMO: weighted mode; SNP: single nucleotide polymorphism. 
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epidemiological studies. One (i.e., HDL-C) has been found in previous 
MR studies, while the other metabolites are novel findings from our 
study. 

Nonetheless, several limitations should be considered when inter
preting our results. First, our study could not completely rule out the 
possible presence of horizontal pleiotropy, although we performed 
comprehensive MR analyses to confirm consistent causal estimations. 
Second, some metabolites in the original metabolomics data were 
excluded from our analysis due to their lack of three or more genetic 
instruments. Third, some metabolites were present in two metabolomics 
GWAS, mainly met-c and met-d, but they were only significant in one 
MR analysis. The different cohort characteristics, study designs, and 
sample sizes may be underlying these differences. However, we did find 
that the MR estimates between the two metabolomics GWAS are highly 
correlated (Supplementary Fig. 1). Fourth, our study could not differ
entiate between MS subtypes. It is of great interest to perform a similar 
analysis for MS subtypes in the future when large GWAS of these sub
types become available. Fifth, the current MR methods assume a linear 
relationship between the exposure and the outcome, which may not be 
the case for some metabolite and MS. Sixth, the MR estimates reflect the 
lifelong effects of an exposure and provide no information about the 
critical window of the exposure action. Last, our study was restricted to 
individuals of European descent to reduce possible bias from population 
stratification, but it limits the generalizability of our results to other 
populations. 

Our metabolome-wide MR study prioritized metabolites, such as 
lysine, serine, acetone, acetoacetate, and various lipids, in the lipid, 
amino acids and energy metabolism that likely play causal roles in the 
development of MS. They may serve as diagnostic biomarkers to identify 
individuals at high risk for early prevention. Future studies on these 
metabolites will further our understanding of the MS pathogenesis and 
evaluate the efficacy of these metabolites as therapeutic targets. 
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