
Materials and Methods 

Reference genomes and annotations. The reference sequence for the human nuclear genome was 

GRCh37/hg19, as downloaded from the 1000 Genomes Project data server 

(http://www.1000genomes.org/). The revised Cambridge Reference Sequence (rCRS) and gene 

annotations for the human mitochondrial genome were downloaded from NCBI with accession 

number NC_012920. So were the reference mitochondrial genomes and annotations for Pan 

troglodytes, and Pongo abelii. Annotation of synonymous and non-synonymous changes for 

rCRS, and the secondary structure of tRNA and rRNA was retrieved from a previous study (1). 

The secondary structure of tRNA and rRNA were computed with the mfold program (2). 

Relative Mutation Rate (RMR) for each site was inferred as the absolute frequency of occurrence 

of the mutation in a phylogenetic tree constructed with 2196 global human samples (3).  

Sequencing data. Sequencing reads mapped to the mitochondrial genome in the 1000 Genomes 

Project phase 1 data were downloaded from the 1000 genomes data server. Our analysis focused 

on 1085 unrelated individuals from 14 populations, which were sequenced using either 

ILLUMINA or SOLID platforms. There were 9 individuals sequenced by two methods 

(ILLUMINA and LS454). These individuals were used to confirm the reliability of our 

computational pipeline with ILLUMINA data. See Table S1 for more detailed information. 

Definition of ancestral alleles. A previously described method was used to define ancestral 

human mtDNA alleles with high confidence (4). First, LASTZ (5) was used to align the 

mitochondrial genomes of Homo sapiens, Pan troglodytes, and Pongo abelii. Furthermore, to 

take advantage of the better conservativeness of protein sequences than DNA sequences, we 

aligned the coding region based on MUSCLE alignments of protein sequences (6). Only alleles 

that were consistent in both Pan troglodytes and Pongo abelii, and also present in Homo sapiens 

were considered as the ancestral alleles.  

Computational pipeline for calling heteroplasmy and polymorphism. Sequencing reads retrieved 

from the 1000 genome data sever were re-mapped to the combined human genome, both nuclear 

and mitochondrial genomes, using GSNAP (7). Following previous practice (8), we counted 

unknown characters (N) as mismatches (--query-unk-mismatch=1) and only retained sequences 

that mapping uniquely to the genome (-n 1 -Q). Another important parameter for mapping is the 

maximum number of mismatches allowed (-m). By default, the parameter is ((readlength+2)/15 - 

2), corresponding to 5 mismatches for read length of 100bp. In our analysis, using the default 

parameters resulted in unsatisfactory coverage, especially for non-European individuals. This is 

due to the fact that mitochondrial DNA is much more divergent than nuclear DNA (1), and the 

reference mitochondrial DNA is from an individual of European origin (9). To accommodate this 

fact, we adjusted the parameter to allow 7% mismatches (-m 0.07), corresponding to 7 

mismatches for a read length of 100 bp. To confirm that our observed patterns are not artifacts of 

mis-mapping, we applied both the default and the adjusted parameters. Both parameters yielded 

similar patterns of heteroplasmy. Only results using a 7% mismatch threshold are presented. 

After the GSNAP reads mapping, we recorded only reads that are uniquely mapped to the 

mitochondrial genome in order to minimize the complications of nuclear mitochondrial 



sequences (NumtS) (10). We further filtered the data and defined “usable sites” based on the 

following three quality control criteria: 1) only bases with Phred quality score >= 20 were used; 

2) only sites with 10X coverage of qualified bases on both positive and negative strands were 

used; 3) only sites that satisfy criteria 1) and 2) in more than 95% individuals were used in 

analysis of heteroplasmy and polymorphism. A candidate heteroplasmic site was defined with 

the following two criteria: 1) the raw frequency for the minor allele is no less than 1% on both 

strands; 2) all alleles have support from at least 2 reads on each strand.  

For each candidate heteroplasmic site, we further applied a maximum likelihood (ML) method to 

accurately estimate the frequency of the major allele while taking into account sequencing error 

(8, 11). For example, for all bases mapped to the positive strand of a locus, 𝑙 bases are the major 

alleles and 𝑘 bases are the minor alleles. Each base has respective sequencing quality, 

corresponding to the probability of sequencing error 𝜀. The underlying parameter of interest is 

the frequency of the major allele 𝑓. The likelihood function could be written as follows:  

 

We estimated 𝑓 under two models: heteroplasmy (m1) and homoplasmy (m0). And a log-

likelihood ratio (LLR) was calculated as 𝑙𝑜𝑔 (
𝐿(�̂�𝑚1)

𝐿(�̂�𝑚0)
) . A high-confidence heteroplasmy was 

defined as candidate heteroplasmy with LLR no less than 5 (8). With all these criteria (See Table 

S2 for a brief list), a total of 4342 heteroplasmies were defined. Among them, 153 have a minor 

allele frequency estimated by the ML method to be smaller than 1%, even though we required 

that the raw frequency for the minor allele is no less than 1% on both strands. 

After detecting heteroplasmy, consensus sequences were assembled for each individual and 

compared among all individuals to identify polymorphic sites. Only “usable sites” satisfying the 

above-mentioned criteria were considered. For each individual, a consensus sequence was 

assembled using the alleles present at homoplasmic sites, and the major alleles at heteroplasmic 

sites. Sites were classified as polymorphic if there was more than one allele present in the 

consensus sequences of the population.  

To confirm the reliability of our computational pipeline in defining heteroplasmy, we took 

advantage of the 9 individuals sequenced by both ILLUMINA and LS454. LS454 data were 

directly retrieved from the 1000 genome data sever and processed as followed: 1) Only loci 

defined as heteroplasmy in ILLUMINA data were examined; 2) Only reads with mapping quality 

no less than 20 and bases with sequencing quality no less than 20 were used; 3) Assuming a 

biallelic state, only the two most common alleles were retained; 4) The frequency of the 

heteroplasmic alleles were estimated with the ML method described above. Only heteroplasmy 

with the same alleles as identified by ILLUMINA was considered as confirmed.  

The measure of pathogenicity. The pathogenicity scores for all possible non-synonymous 

changes were retrieved from a previous study (12). All possible non-synonymous changes were 



inferred based on the rCRS sequence and the pathogenicity of a non-synonymous change was 

predicted with the MutPred algorithm (13). A higher pathogenicity score indicates a higher 

likelihood that the non-synonymous change is pathogenic. Three types of attributes were utilized 

by MutPred in classifying amino acid variations: 1) attributes based on predicted protein 

structure and dynamics including secondary structure, solvent accessibility, transmembrane 

helices, coiled-coil structure, stability, B-factor, and intrinsic disorder; 2) attributes based on 

predicted functional properties such as DNA-binding residuals, catalytic residues, calmodulin-

binding targets, and sites of phosphorylation, methylation, ubiquitination and glycosylation; 3) 

attributes based on amino acid sequence and evolutionary information, including sequence 

conservativeness, SIFT score, Pfam profile score, and transition frequencies. The software is 

trained with a random forest classification model to discriminate between disease-associated 

amino acid substitution from the Human Gene Mutation Database and putatively neutral 

polymorphisms from Swiss-Prot (12, 13).  

The pathogenic effect of all possible non-synonymous changes were also predicted by PolyPhen-

2 (14, 15). PolyPhen-2 combines sequence- and structure-based attributes and predicts the effect 

of missense mutation with a naive Bayesian classifier. The default HumDiv-trained predictor 

was used in this study. The pathogenicity predicted by MutPred and Polyphen is highly 

consistent (Fig. S8).  

The pathogenic effect of tRNA mutations were downloaded from a previous publication (16). A 

tRNA mutation was deemed deleterious by a computational method taking into account the 

following attributes: 1) evolutionary conservation; 2) disruption of Watson-Crick pairing; 3) the 

tendency of co-evolution by complementary mutation in the stem.  

Disease association information was obtained from MITOMAP (17).  

 

 

 

 

 

 

 



 

Fig. S1. The histogram of sequencing depth for mtDNA in 1085 individuals.  

 

Fig. S2. The comparison of alternative allele frequencies for heteroplasmies identified in 9 

individuals sequenced by both ILLUMINA and LS454. The allele frequencies were estimated 

by ML method.  



 

Fig. S3. The prevalence of heteroplasmy in the sample with different MAF cutoff in 

definition of heteroplasmy.  



 

Fig. S4. The prevalence of heteroplasmy and polymorphisms in mtDNA. A. The histogram 

for minor allele frequency of polymorphism. B. The prevalence of heteroplasmy in each genomic 



region; C. The prevalence of polymorphism in each genomic region; D. The genomic 

distribution of polymorphisms and their minor allele frequency in the sample of 1085 individuals.  

 

Fig. S5. The positive correlation between the incidence of heteroplasmy and the minor 

allele frequency of polymorphism in the sample of 1085 individuals. Each dot represent a 

locus that is polymorphic or heteroplasmic.  

 

 

 



 

Fig. S6. Mutation rate in mtDNA and heteroplasmy. A. The barplot of relative mutation rate 

for heteroplasmic and homoplasmic loci. Error bar represents one standard error. B. The positive 

correlation between relative mutation rate and the number of occurrence in the population. Each 

black dot represents a heteroplasmic locus. And the red dashed line indicates the linear 

regression.  



 

Fig. S7. The relative risk of heteroplasmy being pathogenic when compared with 

polymorphism. A pathogenic mutation is defined with varying cutoff of pathogenicity score. 

The red line is the empirical observation while the pink region represent the 95% bootstrap 

confidence interval.   

 

 



 

Fig. S8. Consistent pathogenicity as predicted by MutPred and PolyPhen-2.  The MutPred 

pathogenicity scores for the three functional categories predicted by PolyPhen-2.  

 



 

Fig. S9. The distribution of derived allele frequency for heteroplasmies in different regions 

in tRNA and rRNA. 

 

 



 

Fig. S10. The negative relationship between pathogenicity score and the number of 

incidence of heteroplasmy in the population. A. Each dot represents one heteroplasmy. B. 

Similar presentation with A where heteroplasmies are binned based on their incidence.  

 

 

 

 





 

Fig. S11. Similar heteroplasmy pattern across different human populations. Inter-population 

comparisons of: A. the percentage of individuals carrying at least one heteroplasmy; B. the 

percentage of individuals carrying at least one disease-associated heteroplasmy; C. the number 

of heteroplasmy per individual; D. derived allele frequency; E. pathogenicity score of non-

synonymous heteroplasmies. The error bars in A and B represent 95% CI from 105 bootstraps of 

individuals. For A and B, pairwise comparisons were performed with permutation test. For C. D 

and E, pairwise comparison were performed with Wilcoxon rank-sum test. Bonferroni 

corrections were performed with 92 tests including the comparison of male and female. None of 

the population achieve significance in all comparisons with other populations.  

 



 

Fig. S12. Similar heteroplasmy pattern between genders. Inter-gender comparisons of: A. the 

percentage of individuals carrying at least one heteroplasmy; B. the percentage of individuals 

carrying at least one disease-associated heteroplasmy; C. the number of heteroplasmy per 

individual; D. derived allele frequency; E. pathogenicity score of non-synonymous 

heteroplasmies. The error bars in A and B represent 95% CI from 105 bootstraps of individuals. 

For A and B, pairwise comparisons were performed with permutation test. For C. D and E, 

pairwise comparison were performed with Wilcoxon rank-sum test. Bonferroni corrections were 

performed with 92 tests including the inter-population comparisons. No significance were found 

after Bonferroni correction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S1. Sequencing data from 1000 genome project 

Population # by ILLUMINA # by SOLID Total 

ASW 50 11 61 

CEU 81 0 81 

CHB 81 16 97 

CHS 92 8 100 

CLM 50 10 60 

FIN 75 18 93 

GBR 70 19 89 

IBS 6 8 14 

JPT 78 11 89 

LWK 82 14 96 

MXL 52 12 64 

PUR 52 3 55 

TSI 98 0 98 

YRI 76 12 88 

 

ASW: Americans of African Ancestry in SW USA; CEU: Utah Residents (CEPH) with Northern 

and Western European ancestry; CHB: Han Chinese in Bejing, China; CHS: Southern Han 

Chinese; CLM: Colombians from Medellin, Colombia; FIN: Finnish in Finland; GBR: British in 

England and Scotland; IBS: Iberian population in Spain; JPT: Japanese in Tokyo, Japan; LWK: 

Luhya in Webuye, Kenya; MXL: Mexican Ancestry from Los Angeles USA; PUR: Puerto 

Ricans from Puerto Rico; TSI: Toscani in Italia; YRI: Yoruba in Ibadan, Nigera. Populations 

highlighted in blue are those of European ancestry.  

 

 

 

 

 

 

 

 

 

 

 



 

Table S2. Comparison of criteria for calling heteroplasmy. 

 

He et al. 

2010 

Nature(18) 

Li et al. 

2010, 

AJHG(19) 

Goto et al. 

2011, 

Genome 

Biology(20) 

Picardi & 

Pesole, 

2012, 

Nature 

Methods(8) 

This study 

Sequencing 

Technology 

ILLUMINA 

~16,700X 

ILLUMINA 

36 & 76 bp 

~67 & 

~211X 

ILLUMINA 

~1,170X 

ILLUMINA, 

Agilent, 

NimbleGen 

ILLUMINA, 

SOLID 

Mapping Tools Eland MIA BWA GSNAP 
GSNAP 

remapping 

Mismatches 
<= 3 in 36 

bp 
Default Default Default 

Default or 

7% 

Reads 

remove 

low-quality 

reads 

remove 

duplicate 

reads & 

low-quality 

reads 

-- -- 

Only reads 

originally 

mapped to 

mtDNA by 

1000 genome 

project 

Mapping -- -- Unique Unique Unique 

Base Quality 

>=23 for all 

bases in the 

read 

>= 20 on 

site; 

>= 15 for 5 

bp flanking 

>= 30 on 

site 
>=20 on site >=20 on site 

Minimum Depth 

>= 10 

distinct 

reads 

-- 

>= 100X 

HQ depth 

on each 

strand 

>=20 X 

>=2 reads 

>= 10X HQ 

depth on 

each strand 

Double Strand 

Validation (control 

for context-

dependent error & 

PCR duplicate 

during sequencing) 

>=3 reads 

on each 

strand 

>= 1 read 

on each 

strand 

>=100 HQ 

depth on 

each strand; 

>= 2% raw 

frequencya 

on each 

strand; 

-- 

>= 2 reads 

on each 

strand; >=1% 

raw 

frequency on 

each strand 

Minor allele 

frequencyb  
>=1.6% >=10% 

>= 2% on 

each strand 
-- 

>=1% on 

each strand 

Log-likelihood ratio -- -- -- >=5 >=5 

a. Raw frequency for each locus was calculated as the fraction of the allele among all 

observed alleles. This is in contrast to frequency estimated with maximum likelihood 

method which takes into account sequencing error.  

The minor allele frequency used in all studies are based on raw frequency.  
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