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Supplementary Figure 1. Distribution and reproducibility of disrupted and non-disrupted SNV-
interaction pairs. (a) Fraction of protein pairs recovered by PCA across increasingly stringent PCA 
scoring thresholds. SE of proportion is demarcated by shading. (b) Fraction of protein pairs recovered 
by PCA for disrupted and intact interactions in comparison to positive and random reference sets 
(PRS and RRS). Interactions corresponding to SNVs found on overrepresented bait proteins (bait has 
>20 interaction partners listed in Supplementary Data 2) were removed. P values by one-tailed Z-test 
between disrupted and intact interactions. P values by two-tailed Z-test for all other comparisons. (c) 
Fraction of disruptive variants (n = 298) categorized by number of disrupted interaction partners. (d) 
Cumulative distribution function plotting the fraction of disruptive variants against the total fraction of 
interactions perturbed. (e) Distribution of MutPred2 scores across three disruption categories. Thick 
black bars are the interquartile range, white dots display the median, and extended thin black lines 
represent 95% confidence intervals. P values by one-tailed U-test. (f) Co-expression of protein 
abundance levels for protein interaction pairs used in this study. Interacting protein pairs were 
significantly more likely to be co-expressed than random protein pairs in tissue and cell data from the 
Human Proteome Map. P value by two-sided KS test. See also Supplementary Note 1.
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Supplementary Figure 2. Protein-destabilizing variants are selectively constrained and do not fully
account for interaction perturbation phenotypes. (a) Distribution of allele frequencies for variants 
categorized as stable (n = 214) or other (n = 64). Other was constructed by combining moderately 
stable and unstable variants. P values by one-tailed U-test. (b) Distribution of interaction-disruptive 
ExAC variants across three stability categories. (c) γ-hydroxybutyrate metabolism pathways involving 
AKR7A2, ABAT, and SSADH.
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Supplementary Figure 3. Disruptive variants are not biased towards redundant genes. (a) Genes 
harboring non-disruptive and disruptive variants were intersected with genes found in the Duplicated 
Genes Database. For non-disruptive and disruptive variants, the fraction of genes that overlap with 
genes listed in this database were plotted. Error bars indicate ±SE of proportion. P values by two-tailed 
Z-test. (b) Sets of sequence-conserved, functionally similar proteins were generated at increasingly 
stringent thresholds for defining gene duplication. Proteins harboring non-disruptive and disruptive 
variants were intersected with these sets and the fraction of duplicate proteins was plotted at different 
duplication thresholds. A higher duplication threshold indicates a more stringent cutoff criteria for 
defining functionally similar proteins.
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Supplementary Figure 4. Purifying selection may be stronger for disruptive variants at conserved 
protein sites. (a) Relationship between conservation and allele frequency for disruptive and non-
disruptive variants examined across increasingly stringent cutoffs for JS divergence scores. Error bars 
indicate ±SE of mean. (b) Relationship between conservation and overall allele frequency for disruptive 
and non-disruptive variants examined across increasingly stringent phyloP scores. Error bars indicate 
±SE of mean. P values by one-tailed Z-test. * P < 0.05.
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Supplementary Figure 5. Disruptive variants show no bias towards GWAS phenotypes. (a) Fraction of 
disruptive variants for variants found in the 1000 Genomes phase 3 Afr population at all allele 
frequencies is plotted (yellow). Fraction of disruptive variants for variants for variants in LD with GWAS 
SNPs listed in the UK biobank at R2 thresholds of ≥ 0.4, ≥ 0.6, and ≥ 0.8 are also plotted (grey). (b) 
Fraction of disruptive variants for variants found in the 1000 Genomes phase 3 Afr population at AF ≥ 
0.1% is plotted (yellow). Fraction of disruptive variants for variants for variants in LD with GWAS SNPs 
listed in the UK biobank at R2 thresholds of ≥ 0.4, ≥ 0.6, and ≥ 0.8 are also plotted (grey). (c) Same 
analysis as (a) but restricted to 1000 Genomes phase 3 Eur population. (d) Same analysis as (b) but 
restricted to 1000 Genomes phase 3 Eur population. (e-h) Same analyses as (a-d) but for GWAS SNPs 
listed in the NCBI GWAS Catalog. Error bars indicate +SE of proportion. P values by two-tailed Z-test. 
n.s. = not significant.
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Supplementary Figure 6. Uncropped Western blots for stable, moderately stable, and unstable GFP 
expression examples in Fig. 3a. (a) Westerns for wild-type and corresponding mutant proteins detected 
by α-GFP. (b) α-GAPDH controls for westerns for wild-type and corresponding mutant proteins detected 
in (a). (c) Upper: Westerns for wild-type and corresponding mutant proteins detected by α-GFP. Lower: 
α-GAPDH controls for western in upper. (d) Upper: Westerns for wild-type and corresponding mutant 
proteins detected by α-GFP. 50 kDa marker assigned using ladder from lower. Lower: α-GAPDH controls 
for western in upper. (e) Upper: Westerns for wild-type and corresponding mutant proteins detected by 
α-GFP. Lower: α-GAPDH controls for western in upper. In (a-e), stable, partially stable, and unstable 
mutations are labeled in blue, cyan, and gray, respectively; all α-GAPDH controls were detected using 
stripped membranes. Bands unrelated to this project are not boxed and were not used in any analyses. 
Bands corresponding to α-GFP and α-GAPDH examples used in Fig. 3a are enclosed in black boxes. 
* indicates 50 kDa marker.
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Supplementary Figure 7. Uncropped Western blots for AKR7A2 and PSPH mutant proteins. (a) 
Westerns for wild-type and A142T variant of AKR7A2 detected by α-V5. α-γ-Tubulin control ran on an 
unstripped membrane. (b) Westerns for wild-type and mutant PSPH proteins detected by α-FLAG. 
α-γ-Tubulin control ran on an unstripped membrane. In (a) and (b), black boxes indicate where figures 
were cropped for Western blots in Fig. 3e and Fig. 5a, respectively. * indicates 37 kDa marker.
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Supplementary Figure 8. Uncropped Western blots for SEPT12-SEPT1 co-IPs. (a) Westerns for 
SEPT12 co-IP of SEPT1 using α-FLAG beads. SEPT1 is tagged with 3×HA and detected using α-HA. 
(b) Westerns for SEPT12 co-IP of SEPT1 using α-FLAG beads. SEPT12 is tagged with 3×FLAG and 
detected using α-FLAG. eGFP tagged with 3×FLAG is included as a negative co-IP control. (c) 
α-GAPDH control for SEPT12-SEPT1 co-IP ran on a stripped membrane. In (a-c), black boxes indicate 
where figures were cropped for Western blot in Fig. 5e. * indicates 50 kDa marker.
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Supplementary Figure 9. Diagramming and validating CRISPR/Cas9 genome editing for generating 
Sept12 G169E mutant mice. (a) Schematic of human SEPT12 and approximate location of desired 
variant. Below schematic are the amino acid and nucleotide sequences of region where targeted 
allele resides in human and mouse genomes, as well as the point mutations introduced by 
homologous-directed repair with a synthetic single-stranded oligonucleotide template. Yellow highlight = 
residue/codon positions of interest, red text/underline = nucleotide changes to generate G169E variant; 
black text/underline = silent nucleotide change to prevent Cas9 re-cleavage; blue text = restriction 
enzyme site used for genotyping. (b) Chromatograms for WT and Sept12G169E/G169E mice.



Allele Frequency
Range Min Max Min Max Min Max Range Average
< 0.5% 224 806 1.1 1.7 3.9 10 219-794.3 506.7

0.5 - 5.0% 540 2377 1.1 4.3 5.3 19 533.6-2353.7 1443.7
> 5.0% 10056 11198 37 40 24 28 9995-11130 10562.5

Total number of missense mutations per individual 10748-14278 12513

Allele Frequency
Range Min Max Min Max Min Max Range Average
< 0.5% 76 190 0.81 1.1 3.4 7.5 71.8-181.4 126.6

0.5 - 5.0% 77 130 0.8 1 3.8 11 72.4-118 95.2
> 5.0%

Total number of functional missense mutations per individual 144-299 222
Disruption rate per individual 1.34-2.10% 1.77%

Supplementary Table 1. Calculation of Functional Missense Mutations for 1000 Genomes 
Project Phase I

Citation : The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 
human genomes. Nature 491, 56-65 (2012).
Calculation notes : Missense mutations were obtained by subtracting stop-loss and stop-gain 
variants from non-synonymous variants across allele frequency ranges.

not reported

Missense mutations

Missense mutationsStop-gain VariantsStop-loss VariantsNonsynonymous Variants

Missense mutations per individual

Functional mutations per individual
Nonsynonymous Variants Stop-loss Variants Stop-gain Variants



Allele Frequency Nonsynonymous Stop-loss Stop-gain Missense
Range Variants Variants Variants Variants GERP > 2.0 No filter
< 0.5% 32 41

0.5 - 1885%0.5
> 5.0% 394 742

468484muS
Disruption rate per individual 6.87% 12.27%

Supplementary Table 2. Calculation of Functional Missense Mutations for GoNL

Citation : The Genome of the Netherlands Consortium. Whole-genome sequence variation, population
structure and demographic history of the Dutch population. Nat Genet 46, 818-825 (2014).
Calculation notes : Missense mutations were obtained by subtracting stop-loss and stop-gain variants
from non-synonymous variants across allele frequency ranges.

7043 0.5 7042.5

Functional missense mutations per individual

6404
0

0.5

165
474

6403.5

Functional Mutations

not reported165 0
474



Allele Frequency Missense Nonsense Nonsynonymous
Range Variants Variants Variants Conservative Liberal

All alleles 318 580
Disruption rate per individual 5.49% 10.02%

Supplementary Table 3. Calculation of Functional Nonsynonymous Mutations for ESP Phase I

Citation : Tennessen, J.A., et al. Evolution and Functional Impact of Rare Coding Variation from Deep
Sequencing of Human Exomes. Science 337, 64-69 (2012).
Calculation notes : Functional mutations by mutation type were not reported in citation. As such,
functional nonsynonymous mutations, including nonsense variants, are reported. Disruption rate per
individual is therefore a small overestimate of the number of functional missense mutations per
individual.

35 57895754

Functional mutations per individual
Functional Mutations



 

Supplementary Note 1. Selection of Y2H protein-protein interaction pairs from a reference 

interactome. 

To select interaction partners for each mutant protein tested in our SNV-perturbation screen, we first 

leveraged a Y2H reference interactome comprised of over 14,000 known wild-type protein-protein 

interactions reported in four manuscripts1-4. Since these published interactions are retestable by our version 

of Y2H, we only tested SNVs that corresponded with protein-protein interactions from this reference 

interactome. This requirement for retestable wild-type interactions found in the literature-reported reference 

interactome dramatically reduces the search space in which we probe for disruptive SNVs and prevented 

the need for an all-by-all Y2H interaction screen. 

On average, each protein in the reference interactome has between 2-3 interaction partners. We note 

that we tested 847 unique genes against 2,185 corresponding interaction partners (~2.5 interaction partners 

per gene-encoded protein). For each wild-type protein-protein interaction, we then tested whether 

corresponding SNVs for each interaction can perturb that interaction. This consisted of 2,009 SNVs found 

on 847 unique genes. Since each of these genes has ~2.5 interaction partners, this results in a total of 4,797 

SNV-interaction pairs tested (Fig. 1c). 

We further note that Y2H has been extensively demonstrated to detect biologically meaningful 

interactions across many organisms in many studies1,3-8. To further confirm the biological significance of 

the interactions used in this study, we examined the co-expression of protein abundance levels 

corresponding to interactions used in our study. Using protein expression levels for 30 adult and fetal tissues 

and cell types from the Human Proteome Map9, we found that proteins corresponding to interactions used 

in our study were significantly more likely to be co-expressed than random protein pairs, confirming the in 

vivo biological significance of the interactions used in the study (Supplementary Figure 1f). 



 

Supplementary Note 2. Calculating the fraction of disruptive missense variants per individual. 

We note that allele counts in ExAC correspond predominantly to common alleles (MAF > 1%). Therefore 

the fraction of disruptive alleles that are common will have the greatest influence on the average number of 

interaction-disruptive variants per individual. Disruptive and total allele counts corresponding to Fig. 2b 

are presented below in Supplementary Table 4. 

 

MAF bins  <0.1%  0.1‐1.0%  1‐10%  >10%  Cumulative 

Disruptive alleles  173  70  35  20  298 

Total alleles   865  390  213  208  1676 

Disruption rate  20.0%  17.9%  16.4%  9.6%  17.8% 

 
Supplementary Table 4:  Disruption rate for tested ExAC variants calculated across four MAF bins. 

 
Next, we calculated the site frequency spectrum for ExAC alleles annotated as missense_variant in at least 

one transcript by summing the adjusted overall allele counts (listed as AC_adj in the ExAC database) per 

MAF bin and dividing each bin count by the total adjusted overall allele count across all bins as shown in 

the formula below: 

 

 
௜݂ ൌ

݈݈݈݁݁ܣ ௜ݐ݊ݑ݋ܿ
∑ ݈݈݈݁݁ܣ ௜ସݐ݊ݑ݋ܿ
௜

 (1)

  

where ݅ represents the four MAF bins examined and ௜݂ represents the fraction of missense variants per 

individual expected to be in MAF bin ݅. Applying this equation to all four MAF bins yields the following 

per-individual proportions: 

 

MAF bins  <0.1%  0.1‐1.0%  1‐10%  >10% 

Mean proportion of missense SNVs ሺ ௜݂ሻ  0.0173  0.0254  0.0793  0.8780 

Adjusted disruption rate  0.00346 0.00456  0.0130  0.0844 

 
Supplementary Table 5:  Mean proportion of missense SNVs per individual across four MAF bins. 

 

As noted earlier, most variants per individual genome, 87.8%, are very common (MAF > 10%). The 

Adjusted disruption rate per MAF bin listed in Supplementary Table 5 was obtained by multiplying the 

Mean proportion of missense SNVs by the Disruption rate listed in Supplementary Table 4. Summing the 

Adjusted disruption rate across all MAF bins yields a mean disruption rate per individual = 10.5% ± 1.8% 

as reported in Fig. 2c, where the error is calculated by the delta method. 

  



 

Supplementary Note 3. Categorizing stable, moderately stable, and unstable mutant proteins. 

Plate reader raw data from each 96-well plate consists of two fluorescence readings corresponding to GFP 

and mCherry expression in each well for proteins expressed in pDEST-DUAL vector. Wildtype/mutant 

groups are segregated to be on the same plate so that they can be processed together. Each plate is allocated 

eight wells for background controls: four wells transfected with empty pDEST-DUAL vector such that only 

mCherry expression is expected, used as a GFP baseline, and four wells transfected with empty pcDNA-

DEST47 vector where no GFP or mCherry expression is expected, used as a mCherry baseline. All 

expression values are normalized as a z-score representing the number of standard deviations away from 

the mean background expression.  

 

 
 
Supplementary Figure 10: All fluorescence readings are represented as a z‐score away from the controls 
in that plate’s 12th column. A12‐D12 serve as GFP background using empty pDEST‐DUAL vector, E12‐H12 

serve as mCherry background using empty pcDNA‐DEST47 vector. 

 
Next, we apply basic quality control filters. A fluorescence reading is considered significant if the P 

value associated with its z-score on the background normal distribution is less than 0.05. We only perform 

analysis on experiments with significant wildtype expression for both GFP and mCherry channels. Further, 

we filter out any mutants that do not present significant mCherry expression.  

We calculate wildtype activation and fold change to determine whether a mutant well is under-

expressing GFP relative to its corresponding wildtype. Wildtype activation is the ratio between the GFP z-

score and the mCherry z-score in the wildtype well for that ORF and is reported as “Wildtype stability 

score” in Fig. 3b. Similarly, mutant activation is the ratio between the GFP z-score and mCherry z-score in 

the mutant well for an ORF and is reported as “Mutant stability score” in Fig. 3b. We then calculated fold 

change as the ratio of mutant activation over wildtype activation, reported in Fig. 3d as the “stability score 

ratio.” All values are reported in Supplementary Data 5. 



 

 
WT Activation =

Z(GFPWT)

Z(mCherryWT)
 (2)

  
 
 

Fold Change =

ܼሺܨܩ ெܲ௨௧ሻ
ܼሺ݉ݕݎݎ݄݁ܥெ௨௧ሻ
ܼሺܨܩ ௐ்ܲሻ

ܼሺ݉ݕݎݎ݄݁ܥௐ்ሻ

 (3)

  
 

As an added quality control step, experiments with WT Activation less than 1.0 are removed. All other 

experiments are then classified into three groups: stable if the fold change is above 0.5, moderately stable 

if the fold change is between 0.5 and 0.0, and unstable if the fold change is less than 0.0. 

 
  



 

Supplementary Note 4. Dissecting the impact of variants in disease. 

Studying complex disease is difficult since very often no single variant alone is fully penetrant. Nonetheless, 

the simplest case of complex disease, digenic inheritance in which two genes both contribute to a single 

phenotype, is actually quite prevalent. Searching HGMD10 yields a total of 365 mutations that contribute to 

digenic inheritance. Moreover, a search through PubMed for “digenic mutations” yielded 378 papers, 

although this strictly refers to cases in which two heterozygous mutations in different genes must occur 

together for the disease phenotype to manifest. Cases in which the impact of a disease-causing mutation in 

one gene is influenced by a polymorphic variant in another gene are far more common and are extensively 

documented in HGMD. Such variants are often only partially penetrant, resulting in disease in only 

particular genetic backgrounds11. While dissecting how these variants modulate each other’s impact is not 

straightforward, individually assessing the impact of these variants in isolation is a crucial first step towards 

understanding how these variants function epistatically. In this context, our study represents an important 

resource for examining what fraction of population variants are functional and could conceivably play a 

role in disease risk as a result. 

  



 

Supplementary Note 5. Examining the potential drug-relevance of disruptive SNVs 

The results of our study may have important implications in related fields such as pharmacogenomics and 

toxicogenomics. Disruptive SNVs on enzymes may alter the metabolic kinetics of impacted enzymes, while 

SNVs on transporters and targets of drugs may lead to changes in the pharmacokinetic and 

pharmacodynamic properties of their corresponding proteins. For example, the D816H/V mutations on the 

receptor tyrosine kinase, KIT, confers resistance to imatinib and sunitinib by shifting the conformational 

equilibrium of KIT12. To explore the potential relevance of our SNV disruption data, we generated a dataset 

of disruptive SNVs potentially relevant to pharmacogenomics and toxicogenomics by intersecting our 

SNVs disruption dataset with four sets of genes: all human enzymes, drug-metabolizing enzymes, drug 

targets, and drug transporters. The list of all human enzyme genes was obtained from HumanCyc version 

21.513, while the lists of drug-related genes were obtained from DrugBank version 5.1.214. Among the SNVs 

that we tested, 350 were on enzymes, and 84 of them disrupted at least one interaction. A table consisting 

of all disruptive SNVs that may be relevant to drug action is provided in Supplementary Data 7.



 

Supplementary Note 6. Background and motivation for Protein Complementation Assay. 

Protein Complementation Assay (PCA) is a protein-protein interaction assay performed in HEK 293T cells 

in which a bait and prey protein are fused to two complementary fragments of a fluorescent protein, YFP. 

If the bait and prey protein successfully interact, the two YFP fragments will stably bind and fluoresce as a 

result. PCA is a particularly valuable assay in protein-protein interaction screens because it is high-

throughput, and it provides an independent assay for validating the quality of protein-protein interactions 

detected through Y2H screens. For this reason, PCA is commonly used in many interactome screens, 

including in Arabidopsis7, yeast3,8, and human4,15. Notably, PCA can also be used to validate that two 

proteins do not interact, which is important when testing the impact of disruptive variants. To do this, loss 

of fluorescence signal in PCA for mutant interaction pairs relative to wild-type pairs is measured to validate 

that Y2H-tested mutations are indeed disruptive16,17. 
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