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Extensive Mendelian randomization study identifies
potential causal risk factors for severe COVID-19
Yitang Sun 1, Jingqi Zhou1,2 & Kaixiong Ye 1,3✉

Abstract

Background Identifying causal risk factors for severe coronavirus disease 2019 (COVID-19)

is critical for its prevention and treatment. Many associated pre-existing conditions and

biomarkers have been reported, but these observational associations suffer from confounding

and reverse causation.

Methods Here, we perform a large-scale two-sample Mendelian randomization (MR) ana-

lysis to evaluate the causal roles of many traits in severe COVID-19.

Results Our results highlight multiple body mass index (BMI)-related traits as risk-

increasing: BMI (OR: 1.89, 95% CI: 1.51–2.37), hip circumference (OR: 1.46, 1.15–1.85), and

waist circumference (OR: 1.82, 1.36–2.43). Our multivariable MR analysis further suggests

that the BMI-related effect might be driven by fat mass (OR: 1.63, 1.03–2.58), but not fat-free

mass (OR: 1.00, 0.61–1.66). Several white blood cell counts are negatively associated with

severe COVID-19, including those of neutrophils (OR: 0.76, 0.61–0.94), granulocytes (OR:

0.75, 0.601–0.93), and myeloid white blood cells (OR: 0.77, 0.62–0.96). Furthermore, some

circulating proteins are associated with an increased risk of (e.g., zinc-alpha-2-glycoprotein)

or protection from severe COVID-19 (e.g., prostate-associated microseminoprotein).

Conclusions Our study suggests that fat mass and white blood cells might be involved in the

development of severe COVID-19. It also prioritizes potential risk and protective factors that

might serve as drug targets and guide the effective protection of high-risk individuals.
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Plain language summary
People infected with SARS-CoV-2

can remain asymptomatic, have mild

symptoms, or develop severe

COVID-19 that increases their risk of

death. Finding factors that directly

contribute to the risk of developing

severe COVID-19, so-called causal

risk factors, may help in prevention

by identifying individuals at higher

risk and in treatment by providing

clues of targets for therapies. We

applied advanced statistical methods

that leverage genetic variations

among individuals to separate causal

risk factors from coincidences, sifting

through tens of thousands of candi-

date factors. We show that levels of

fat mass, certain white blood cells,

and multiple circulating proteins are

potential causal risk factors for

severe COVID-19. These findings

help us better understand severe

COVID-19 and guide future studies to

develop strategies of prevention and

treatment.
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The coronavirus disease 2019 (COVID-19) is a global pan-
demic caused by severe acute respiratory syndrome cor-
onavirus 2 (SARS–CoV–2)1. As of mid-April 2021, 146

million confirmed cases and three million deaths from COVID-
19 have been reported worldwide2. Despite substantial public
health and medical efforts, COVID-19 continues to cause irre-
versible damage and death3–5. It is essential to identify risk factors
and potential drug targets for COVID-19 in order to improve
primary prevention and to develop treatment strategies.

Many observational studies have reported that older age, male
gender, non-White ethnicity, and pre-existing conditions, such as
cardiovascular disease, diabetes, chronic respiratory disease,
hypertension, and cancers, are associated with increased COVID-
19 susceptibility and severity5–8. Moreover, retrospective obser-
vational studies have noted that hospitalized COVID-19 patients,
especially those with severe respiratory or systemic conditions,
are at increased risks of atrial fibrillation, nonsustained ven-
tricular tachycardia, acute kidney injury, neurologic disorders,
and thrombotic complications9–12. Vitamin-D deficiency, higher
body mass index (BMI), and obesity have been associated with an
increased risk of COVID-1913,14. Some lifestyle factors were also
identified as risk-increasing, such as smoking, alcohol consump-
tion, and lack of physical activity15. However, it is difficult to infer
causal effects from observational studies because they are sus-
ceptible to confounding and reverse causation, while data from
randomized controlled trials are scarce and inconclusive.

Mendelian randomization (MR) study provides a promising
opportunity to validate and prioritize putative risk factors and
drug targets. MR studies use randomly allocated genetic variants
related to the exposure as instrumental variables for investigating
the effect of the exposure on an outcome16. It is expected to be
independent of confounding factors and has been demonstrated
as an efficient and cost-effective strategy to identify causal
effects17. Recent MR studies have provided evidence of causality
for a range of risk factors on COVID-19 (Supplementary Data 1).
For instance, BMI and smoking are associated with an increased
COVID-19 risk, while no evidence of causal effects was found for
circulating 25-hydroxy-vitamin-D levels18–20. However, incon-
sistent results were also reported for some factors, such as Alz-
heimer’s disease, blood lipids, and physical activity18,19,21–26.
Some of these inconsistencies are likely due to the usage of early
genome-wide association studies (GWAS) of COVID-19, which
have small sample sizes. Moreover, most studies are limited to a
small number of candidate factors, leaving many more to be
tested and identified. The recent release of large GWAS meta-
analysis for various COVID-19 phenotypes offers a great
opportunity for MR studies27. However, special care and caution
are also needed when interpreting the results. Sampling from
COVID-19 patients, individuals tested for infection, voluntary
participants, or existing cohorts may result in nonrepresentative
samples and induce collider bias that distorts phenotypic and
genetic associations28–30. The inherent complexity of COVID-19
as an infectious disease and the potential complications in
ascertaining cases and controls make it challenging to disentangle
risk factors for an increased chance of infection, susceptibility to
infection, and disease severity27,28.

In this study, we conducted an unbiased and large-scale MR
analysis to examine the potential causal effects of an extensive list
of exposures on severe COVID-19. All existing GWAS, as com-
piled by the Integrative Epidemiology Unit (IEU) OpenGWAS
project, were included31,32. We note that some GWAS were on
the same traits. In each of these GWAS, independent genetic
variants at the genome-wide significance were selected as
instrumental variables for the studied trait. The associations
between genetic instruments and the risk of severe COVID-19
were evaluated based primarily on three nonindependent GWAS

of COVID-19. The COVID-19 Host Genetics Initiative (HGI)
study A2 from release 4 alpha was used in our discovery analysis.
HGI A2 compared COVID-19 patients with confirmed severe
respiratory symptoms to population controls27. The HGI
B2 study, comparing hospitalized COVID-19 patients to popu-
lation controls, was used as one of our two replication datasets.
The other replication dataset, labeled as the NEJM study, was
drawn from the first published GWAS study of COVID-19
comparing patients with respiratory failure to healthy controls
from Italy and Spain33. We note that due to sample overlap and
different phenotypic definitions, the HGI B2 and NEJM studies
are not independent or strict replications of HGI A2. They mainly
serve the purpose of reducing false positives in our prioritized list
of risk factors. To ensure the robustness of the prioritized list of
risk factors, results based on these three COVID-19 GWAS were
compared to those from different releases (4 alpha vs. 4 and 5),
different case definitions (very severe respiratory COVID-19 in
A2 and hospitalized COVID-19 in B2 vs. any reported infection
in C2), and different control groups (population controls in A2
and B2 vs. nonhospitalized COVID-19 patients in A1 and B1).
Furthermore, multiple sensitivity analyses were performed to
detect and correct for the presence of pleiotropy in genetic
instruments. Here, we only report associations that do not have
evidence of pleiotropy in genetic instruments and are observed in
at least one of the two primary replication analyses. As an in-
depth investigation into the BMI-related traits, we further con-
ducted a multivariable MR analysis to disentangle the effects of
fat mass and fat-free mass. Our findings provide profound
insights into the etiology of severe COVID-19 and prioritize
candidate causal risk factors for public health intervention and for
drug discovery.

Methods
Exposure data sources. This study analyzed publicly available
summary statistics from previous GWAS and did not include
individual-level data. Ethical approval or informed consent was
not required.

To obtain a comprehensive list of traits with existing GWAS,
the summary statistics of 34,519 published GWAS were extracted
from the MRC Integrative Epidemiology Unit (University of
Bristol) GWAS database (https://gwas.mrcieu.ac.uk/). Details of
each GWAS study can be found at https://gwas.mrcieu.ac.uk/
datasets/. The R package TwoSampleMR (version 0.5.5) was
applied to retrieve the IEU GWAS datasets31,32. The univariable
MR study was conducted using the same package. This study is
reported as per the guidelines for strengthening the reporting of
Mendelian randomization studies (STROBE-MR, Supplementary
Data 2)34.

These GWAS were further filtered based on the following
criteria: (1) European ancestry; (2) not eQTL studies, those
labeled as “eqtl” from eQTLGen 201935. A total of 14,385 GWAS
summary datasets were retained and used in this study. Detailed
information on data sources, all GWAS, and their corresponding
traits are available in Supplementary Data 3. The units of the
exposures follow the definitions in the prior GWAS since we
directly used the existing summary statistics. We note that all
exposures reported in the main text and Supplementary Data 4
have the unit of standard deviation (SD).

Outcome data sources. For evaluation of the association
with COVID-19 severity, the instrument-outcome effects were
retrieved from the recent version of GWAS meta-analysis
by the COVID-19 Host Genetics Initiative (HGI, release 4
alpha, accessed on October 9, 2020)27. Detailed information has
been provided on the COVID-19 HGI website (https://
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www.covid19hg.org/results/). In our primary discovery analysis,
we used the summary statistics based on the comparison of 2972
patients confirmed as “very severe respiratory” COVID-19 with
the 284,472 general population samples. This is called “the HGI
A2 study”.

To reduce false positives and to ensure the robustness of our
discoveries, replication analyses were performed with two
additional GWAS of COVID-19. One of them was also from
the COVID-19 HGI, comparing 6492 hospitalized COVID-19
patients with 1,012,809 control participants. We called it “the
HGI B2 study”. Only single nucleotide polymorphisms (SNPs)
with imputation-quality scores >0.6 were retained. The other
GWAS was on 1610 COVID-19 patients with respiratory failure
and 2180 controls from Italy and Spain, and it was called “the
NEJM study”33.

To evaluate the robustness of our findings to different data
releases, we performed additional analyses with the A2 and B2
COVID-19 GWAS from HGI releases 4 and 5. Since the A2 and
B2 GWAS utilized population samples with unknown COVID-19
status, we further performed MR analyses with the A1 and B1
COVID-19 GWAS, which utilized nonhospitalized COVID-19
patients as the control, in order to evaluate the impact of different
control samples. In an attempt to distinguish the effects of
risk factors on COVID-19 susceptibility and severity, we also
included HGI C2 studies, which compared any COVID-19 case
(laboratory-confirmed or clinically confirmed SARS-CoV-2
infection, or self-reported COVID-19) to population controls.
Summary statistics from HGI releases 4 and 5 were accessed on
March 27, 2021 and analyzed with the same computational
pipeline as described before. In addition, genetic correlations
between various COVID-19 phenotypes from HGI releases 4
and 5 were estimated using linkage-disequilibrium score (LDSC)
regression36,37.

Selection of instrumental variables. For the implementation of
MR, SNPs were selected based on the genome-wide significance
threshold (p < 5 × 10−8). To ensure that SNPs are independent,
we pruned the variants by linkage disequilibrium (LD) (R2

threshold of 0.001 or clumping window of 10,000 kb). When
target SNPs were not present in the outcome dataset, proxy SNPs
were used instead through LD tagging (minimum LD R2

threshold of 0.8). The effect alleles of selected genetic variants
were harmonized across the exposure and outcome associations.
F statistics were calculated to assess instrument strength38. F
statistics ≥ 10 indicate strong instruments.

Univariable Mendelian randomization. Two-sample Mendelian
randomization analysis was undertaken using GWAS summary
statistics for each exposure-outcome pair. In order to estimate the
causal effect of each trait on severe COVID-19, the inverse-
variance-weighted (IVW) method with a multiplicative random-
effect model was used as the primary analysis39–41. Horizontal
pleiotropy occurs when SNPs exert an effect on severe COVD-19
through other biological pathways independent of the studied
exposure. To assess the presence of heterogeneity among genetic
instruments, Cochran’s Q statistic was calculated for hetero-
geneity for the IVW analyses42. An extended version of Cochran’s
Q statistic (Rücker’s Q′) can be estimated for the MR-Egger43. We
used the MR-Egger intercept test to evaluate the presence of
unbalanced horizontal pleiotropy40. To account for pleiotropy,
additional sensitivity analyses were performed with the MR-
Egger40,41, weighted median (WM)44, and weighted-mode
methods45. The MR-Egger method allows unbalanced hor-
izontal pleiotropic effects even when all SNPs are invalid
instruments40. The WM method can provide robust causal

estimates when at least 50% of SNPs are valid genetic instru-
ments, while the weighted-mode method reports the causal-effect
estimate supported by the largest number of instruments44,45.
The false-discovery rate (FDR) approach was utilized to correct
for multiple testing, and it was applied to the p values from the
IVW random-effect model46. An association was declared sig-
nificant if the q-value is < 0.05, and was deemed suggestive if the
unadjusted p-value is < 0.05.

Two additional exclusion criteria were applied to filter out
exposures before FDR correction: (1) the number of genetic
instruments was less than three. Three or more are required for
statistical tests of pleiotropic effects and for statistical sensitivity
analyses to correct for pleiotropy. (2) Exposures with indications
of pleiotropy in their genetic instruments. The presence of
pleiotropy violates the assumption of MR analysis. For the
remaining exposures, FDR correction for multiple testing was
applied separately for each analysis with the HGI A2, HGI B2, or
NEJM study. To identify potential causal risk factors for severe
COVID-19, we used two approaches to consider the evidence
strength. First, the significant and replicated results were defined
as those with a q-value < 0.05 in the discovery analysis and a
p-value < 0.05 in either one of the replication studies (Supple-
mentary Data 5). Second, the suggestive and replicated results
were defined as those with a p-value < 0.05 in the discovery
analysis and a p-value < 0.05 in either one of the replication
studies (Supplementary Data 6). All MR analyses were conducted
in R with the TwoSampleMR package31. Additional MR analyses
were also performed using GWAS from HGI releases 4 and 5. An
analysis flowchart is shown in Fig. 1.

For a few exposures that have a small number of genetic
instruments, we performed an exemplary sensitivity analysis by
excluding SNPs with potential pleiotropic effects. For each SNP,
we queried the PhenoScanner47,48 and retrieved any associations
at the genome-wide significance. After excluding SNPs with
associations with blood cell or BMI-related traits, we repeated the
MR analysis as described before.

Multivariable Mendelian randomization. As many BMI-related
traits are typically correlated with each other, we conducted a
two-sample multivariable MR (MVMR) analysis to explore
independent causal risk factors for severe COVID-1949. SNPs
associated with fat mass and fat‐free mass were obtained from
previous GWAS by MRC IEU and the Neale Lab through the
TwoSampleMR package. The effects of genetically predicted fat
mass and fat-free mass for each pair of the whole body, left arm,
right arm, left leg, right leg, and trunk were estimated using the
MVMR package (version 0.2.0) in R.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Study overview. The workflow of our study is summarized in
Fig. 1. Starting with the 34,519 GWAS compiled by the IEU
OpenGWAS project, we focused on the 14,385 GWAS that are
based on European-descent samples, in order to match the major
ancestry in the GWAS of COVID-19 and to avoid false positives
as results of population discrepancy in genetic effects. The details
of traits and their GWAS included in our study are provided in
Supplementary Data 3. From each GWAS, genetic instruments
were selected as independent genetic variants at the genome-wide
significance. Three or more genetic instruments are required for
statistical tests of pleiotropic effects, and thus exposures with
fewer instruments were excluded. For the univariable MR analysis
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of each exposure-outcome pair, we first applied the IVW method
with a multiplicative random-effect model39. We then evaluated
the possible presence of pleiotropic effects with Cochran’s Q test
of heterogeneity and the MR-Egger intercept test for directional
pleiotropy40,42,43. We excluded all exposures with indications
of pleiotropy in their genetic instruments to fulfill the key
assumptions underlying MR analysis. We retained 1817 exposure
GWAS for the discovery analysis with the HGI A2 study, 1740 for
the replication analysis with the HGI B2 study, and 1915 for the
replication analysis with the NEJM study (Supplementary
Data 7). All retained traits have F statistics ≥10, indicating strong
genetic instruments. The FDR approach was utilized in each MR
analysis to correct for multiple testing of many exposures and to
reduce false positives. Based on these three sets of analysis, we
defined two sets of results: (1) the significant and replicated
results, which have a q-value < 0.05 in the discovery analysis and

a p-value < 0.05 in either one of the replication studies (Supple-
mentary Data 5); and (2) the suggestive and replicated results,
which have a p-value < 0.05 in the discovery analysis and a
p-value < 0.05 in either one of the replication studies (Supple-
mentary Data 6). A total of 55 significant and replicated traits
were identified. Among them, 17 were replicated in both repli-
cation datasets (Supplementary Data 4 and Supplementary
Figs. 1–3).

BMI-related traits. In the univariable MR study, eight BMI-
related traits are positively associated with severe COVID-19 in
our discovery analysis and also in both of our replication analyses
(Supplementary Data 4). Genetically predicted one SD-increase of
BMI is associated with a higher risk of severe COVID-19 (OR per
SD increment: 1.89, 95% CI: 1.51–2.37, p= 3.15 × 10−8)

Fig. 1 The workflow of our extensive MR study for severe COVID-19. GWAS genome-wide association studies, IEU Integrative Epidemiology Unit, eqtl
expression quantitative trait loci, HGI host genetics initiative, NEJM New England journal of medicine, IVW inverse-variance weighted, SNP single-
nucleotide polymorphism, SNP# number of SNPs used as genetic instruments, Novel not reported before, Confirming confirming some previously reported
results, even though previous results may be conflicting among themselves; Conflicting conflicting with previously reported results. The definition of
novelty is by comparison to existing COVID-19 MR studies, as summarized in Supplementary Data 1. Detailed summary statistics could be found in
Supplementary Data 5 and 6.
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(Supplementary Fig. 1). Consistent with the effect of BMI,
genetically instrumented higher hip circumference (OR: 1.46,
95% CI: 1.15–1.85, p= 0.0017) and waist circumference (OR:
1.82, 95% CI: 1.36–2.43, p= 6.20 × 10−5) are associated with a
higher risk. The univariable MR study also provided strong evi-
dence that weight and fat mass in the left arm, right arm, left leg,
right leg, trunk, and whole body are positively associated with
severe COVID-19 (Supplementary Data 6).

To pinpoint the different aspects of BMI-related traits, we
investigated the roles of fat mass and fat-free mass indices in
severe COVID-19 (Supplementary Data 8). In the multivariable
MR analysis controlling for fat-free mass, there is strong
evidence for direct causal effects of fat mass measured at
different body parts, including the whole body, left and right
arms, left and right legs, and the trunk. The evidence is
consistent across the three GWAS of COVID-19 severity
(Fig. 2). On the other hand, there is no evidence for direct
causal effects of fat-free mass (Fig. 3). The multivariable MR

analysis results suggest that the causal effects of BMI-related
traits on severe COVID-19 might be mainly driven by fat mass.

White blood cell traits. In the univariable MR analyses, we iden-
tified a group of five white blood cell traits to be negatively associated
with the risk of severe COVID-19. Specifically, suggestive associa-
tions were determined for neutrophil count (OR per SD increment:
0.76, 95% CI: 0.61–0.94, p= 0.013), sum basophil–neutrophil counts
(OR: 0.71, 95% CI: 0.57–0.87, p= 0.001), sum neutrophil–eosinophil
counts (OR: 0.76, 95% CI: 0.61–0.95, p= 0.015), myeloid white cell
count (OR: 0.77, 95% CI: 0.62–0.96, p= 0.0197), and granulocyte
count (OR: 0.75, 95% CI: 0.601–0.93, p= 0.009) (Fig. 4). For all five
traits, causal estimates are broadly concordant in WM and weighted-
mode methods, and consistent directions of the effects were also
found by the MR-Egger method (Supplementary Data 6). Take
neutrophil count as an example, consistent estimates of a protective
effect were found with WM (OR: 0.61, 95% CI: 0.42–0.88, p= 0.009)
and weighted mode (OR: 0.59, 95% CI: 0.39–0.91, p= 0.017).

Fig. 2 Multivariable MR analysis reveals support for independent causal roles of fat mass in severe COVID-19. The effects of fat mass at different body
parts were shown. Each specific fat mass has two GWAS sources, whose ID in the Integrative Epidemiology Unit (IEU) OpenGWAS project was shown
right after the exposure name. Odds ratios (OR) and 95% confidence intervals (CI) are scaled to a genetically predicted 1-standard-deviation (SD) increase
in fat mass. Three COVID-19 GWAS were shown. HGI A2 host genetics initiative study A2, HGI B2 host genetics initiative study B2, NEJM the study
published in New England Journal of Medicine. Associations with p-value < 0.05 were indicated with diamonds, while others with squares. Error bars stand
for 95% CI. Detailed summary statistics could be found in supplementary Data 8.
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Overall, our findings support the potential causal roles of
white blood cells, especially neutrophils, in reducing the risk of
developing severe COVID-19.

Circulating proteins. Our univariable MR analyses revealed
evidence of potential causal effects for some circulating proteins.
There are five proteins whose effects on severe COVID-19 are
significant in the discovery MR analysis (q-value < 0.05) and also
replicated in both replication analyses (p-value < 0.05) (Supple-
mentary Data 4 and Supplementary Fig. 2). Two of them are
negatively associated with the risk of severe COVID-19, including
interleukin-3-receptor subunit alpha (OR per SD increment: 0.87,
95% CI: 0.79–0.94) and prostate-associated microseminoprotein
(OR: 0.71, 95% CI: 0.58–0.86). The other three are risk-increas-
ing, including zinc-alpha-2-glycoprotein (OR: 1.37, 95% CI:
1.14–1.66), C1GALT1-specific chaperone 1 (OR: 1.20, 95% CI:
1.19–1.21), and corneodesmosin (OR: 1.12, 95% CI: 1.09–1.16).

There are another six circulating proteins that have significant
and replicated effects on severe COVID-19, although they are
only replicated in one replication analysis (Supplementary
Data 5): inter-alpha-trypsin inhibitor heavy chain H1 (OR: 1.08,
95% CI: 1.04–1.12), alpha-2-macroglobulin receptor-associated
protein (OR: 1.14, 95% CI: 1.07–1.23), resistin (OR: 1.09, 95% CI:
1.07–1.11), reticulon-4 receptor (OR: 0.86, 95% CI: 0.79–0.93),
C–C motif chemokine 23 (OR: 0.88, 95% CI: 0.83–0.92), and
collectin-10 (OR: 0.83, 95% CI: 0.76–0.901). Additionally, our
suggestive and replicated results revealed another 13 proteins to
be associated with the severe COVID-19 risk (Supplementary
Data 6). Overall, our MR analyses prioritized scores of circulating
proteins that are potentially causal in the development of severe
COVID-19.

Comparisons across HGI releases and phenotype definitions.
While our primary analysis utilized COVID-19 GWAS (A2 and

Fig. 3 Multivariable MR analysis reveals no support for causal roles of fat-free mass in severe COVID-19. The effects of fat-free mass at different body
parts were shown. Each specific fat-free mass has two GWAS sources, whose ID in the Integrative Epidemiology Unit (IEU) OpenGWAS project was
shown right after the exposure name. Odds ratios (OR) and 95% confidence intervals (CI) are scaled to a genetically predicted 1-standard-deviation (SD)
increase in fat mass. Three COVID-19 GWAS were shown. HGI A2 host genetics initiative study A2, HGI B2 host genetics initiative study B2, NEJM the
study published in New England Journal of Medicine. Associations with p-value < 0.05 were indicated with diamonds, while others with squares. Error bars
stand for 95% CI. Detailed summary statistics could be found in Supplementary Data 8.
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B2) from HGI release 4 alpha, new data releases are available,
offering an opportunity to evaluate the robustness of our prior-
itized list of risk factors across data releases. For the list of
55 significant and replicated exposures, 47 (85.45%) were also
observed with the A2 and B2 GWAS from HGI release 4, while
40 (72.73%) were observed with those from HGI release 5, at the
significance level of p < 0.05 (Supplementary Fig. 4, Supplemen-
tary Data 5 and 9). Moreover, since HGI A2 and B2 GWAS
utilized population samples with unknown COVID-19 status as
the control, we performed additional sensitivity analysis using
HGI A1 and B1 GWAS, which compared very severe respiratory
and hospitalized COVID-19 patients, respectively, with non-
hospitalized COVID-19 patients as the control. Despite much
smaller control-sample sizes, MR analysis with A1 and B1 still
observed 36 (65.45%) of the 55 prioritized factors (Supplementary
Data 5 and 10). These results suggest that our prioritized list of
risk factors is robust to different data releases and control
samples.

The availability of multiple phenotype definitions, including
very severe respiratory COVID-19 (HGI A2), hospitalized
COVID-19 (HGI B2), and any reported SARS-CoV-2 infection
(HGI C2), also offers a possibility of distinguishing risk factors
that affect the susceptibility to the SARS-CoV-2 infection from
those that affect COVID-19 disease progression upon infection.
LDSC analysis across these GWAS of different phenotype
definitions and data releases revealed very high pair-wise genetic
correlations, with the lowest rg of 0.85 between B2 and C2
(Supplementary Data 11). For the 55 significant and replicated
exposures prioritized in our primary analysis with A2 and B2, 39
were identified (p < 0.05) in MR analysis with at least one C2
GWAS from releases 4 and 5, suggesting that these factors may
affect both susceptibility and severity (Supplementary Fig. 4 and
Supplementary Data 12 and 13). Notably, BMI-related traits and
fat mass fall in this category. There are 16 significant and
replicated exposures that were not identified in any MR analysis
with HGI C2 GWAS, suggesting that they may mainly affect
disease severity (Supplementary Data 13). For example, zinc-
alpha-2-glycoprotein is associated with an increased risk of severe
or hospitalized COVID-19 in our primary analysis with HGI A2
(OR: 1.37, 95% CI: 1.14–1.66), HGI B2 (OR: 1.24, 95% CI:
1.07–1.45), and NEJM (OR: 1.40, 95% CI: 1.08–1.82). But it has

no association with the risk of SARS-CoV-2 infection in analysis
with HGI C2 from either release 4 (OR: 1.04, 95% CI: 0.93–1.16)
or release 5 (OR: 1.00, 95% CI: 0.91–1.09). Other notable severity-
related risk factors in this category include prostate-associated
microseminoprotein, resistin, corneodesmosin, bradykinin, and
C–C motif chemokine 23. On the other hand, there are 24
exposures that are significant (p < 0.05) in all three MR analyses
with C2 GWAS, but not significant in our three primary MR
analyses of severe COVID-19, suggesting that they may mainly
affect susceptibility (Supplementary Data 13). Notable factors in
this category include rheumatoid arthritis, phospholipids in small
VLDL, the concentration of small VLDL particles, and matrix
metalloproteinase-9. Comparisons across different COVID-19
phenotypes suggest risk factors that may mainly affect suscept-
ibility, severity, or both. However, due to the complexity of
COVID-19 disease progression and the bias towards severe cases
in most COVID-19 GWAS, we would like to emphasize the
preliminary nature of this analysis and caution against over-
interpretation.

Discussion
This large-scale MR study examined an extensive list of risk
factors and prioritized those that potentially play causal roles in
the development of severe COVID-19. It leveraged GWAS of
COVID-19 of the largest sample size, and the findings were
replicated with one, and for some associations, two additional
COVID-19 GWAS. Using univariable MR, we first confirmed
that BMI-related traits are putative causal risk factors for severe
COVID-19. Our multivariable MR results further suggested that
the effects of BMI-related traits might be driven by fat mass but
not fat-free mass. Moreover, our findings indicate that
white blood cell traits, particularly neutrophils, are inversely
associated with the severe COVID-19 risk. We also highlighted
scores of circulating proteins that could potentially serve as drug
targets.

Our main finding that higher BMI-related traits are associated
with a higher risk of severe COVID-19 is consistent with several
recent MR studies18,19,23,24. In terms of effect size, we found that
one-SD increase of BMI was causally associated with a higher risk
of very severe respiratory COVID-19 (OR: 1.89, 95% CI:

Exposure (white blood cell traits)

Neutrophil count || id:ebi a GCST004629

HGI A2

HGI B2

Sum basophil neutrophil counts || id:ebi a GCST004620

HGI A2

HGI B2

Sum neutrophil eosinophil counts || id:ebi a GCST004613

HGI A2

HGI B2

Myeloid white cell count || id:ebi a GCST004626

HGI A2

HGI B2

Granulocyte count || id:ebi a GCST004614

HGI A2

HGI B2

OR [95% CI]

0.76 [0.61 0.94]

0.85 [0.74 0.98]

0.71 [0.57 0.87]

0.83 [0.72 0.95]

0.76 [0.61 0.95]

0.84 [0.73 0.96]

0.77 [0.62 0.96]

0.84 [0.73 0.96]

0.75 [0.6 0.93]

0.84 [0.73 0.97]

P value

0.013

0.022

0.001

0.009

0.015

0.010

0.020

0.012

0.009

0.015

0.5 1 1.5
Odds ratio

p < 0.05
p  0.05

Fig. 4 MR analysis of white blood cell traits on severe COVID-19 risk. The effects of counts of different white blood cells were shown. For each specific
blood-cell count, its GWAS ID in the Integrative Epidemiology Unit (IEU) OpenGWAS project was shown right after the exposure name. Odds ratios (OR)
and 95% confidence intervals (CI) are scaled to a genetically predicted 1-standard-deviation (SD) increase in white blood cell trait. Two COVID-19 GWAS
were shown. HGI A2 host genetics initiative study A2, HGI B2 host genetics initiative study B2. Associations with p-value < 0.05 were indicated with
diamonds, while others with squares. Error bars stand for 95% CI. Detailed summary statistics could be found in Supplementary Data 6.
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1.51–2.37) and hospitalized COVID-19 (OR: 1.69, 95% CI:
1.45–1.97). In an observational study, Hamer et al. reported that
increasing BMI had a significantly increased risk of COVID-19
hospitalization in overweight subjects (OR: 1.39, 95% CI:
1.13–1.71, 1.39), obese stage I (OR: 1.70, 95% CI: 1.34–2.16), and
stage II (OR: 3.38, 95% CI: 2.60–4.40)50. Our MR estimates are
consistent with observational estimates, while the minor differ-
ences may reflect different phenotype definitions and the impacts
of confounding factors in observational associations. Further-
more, our multivariable MR analysis further showed that fat mass
is a causal risk factor for severe COVID-19, while fat-free mass is
not. These results suggest that the causal effect of BMI on severe
COVID-19 is likely driven by fat mass. The causal effects of BMI
and fat mass have plausible biological mechanisms. Fat mass has
been known to have deleterious effects on lung function,
inflammation, and immunity51–53. In adipose tissue, high pro-
duction of circulating proinflammatory cytokines and adipokines
may intensify virally induced inflammation and immune dysre-
gulation, and contribute to acute respiratory distress syndrome,
which is the leading cause of mortality from COVID-1954–57.
Notably, other causal risk factors of severe COVID-19 identified
in this study are also related to adiposity, including glucosamine,
resistin, prostate-associated microseminoprotein, and zinc-alpha-
2-glycoprotein58–62. These connections suggest a shared
mechanism for their contribution to severe COVID-19. There-
fore, further mechanistic understanding of fat mass and other
related risk factors will shed light on the etiology of severe
COVID-19 and provide multiple targets of intervention for pre-
vention and treatment.

Our study indicates that white blood cell traits, especially
neutrophils, are inversely associated with the risk of severe
COVID-19. In addition to direct evidence from neutrophils, sum
basophil–neutrophil counts and sum neutrophil-eosinophil
counts are directly related to neutrophils, and concordant cau-
sal effects were obtained using multiple MR methods. We also
identified myeloid white blood cell counts and granulocyte counts
as being inversely associated with the risk of severe COVID-19,
which is consistent with our previous MR findings63. In contrast
to the negative associations in this MR study, previous observa-
tional studies have provided strong evidence that elevated white
blood cells and neutrophils but depleted lymphocytes are com-
mon in COVID-19 patients64–67. This discrepancy highlights the
possibility that observed associations are due to confounding and
reverse causation. The causal role of neutrophils in preventing the
development of severe COVID-19 has biological support. Neu-
trophils, the integral components of the innate immune system,
are the first line of defense against invading pathogens68. More-
over, neutrophils participate in elaborate cell-signaling networks
involving cytokines, chemokines, survival, and growth factors that
cause downstream proinflammatory effects69. On the other hand,
neutrophils are involved in the hyperinflammatory responses
(e.g., overproduction of neutrophil extracellular traps and cyto-
kine storm) in severe COVID-19 patients. This reflects the reverse
causal effect of COVID-19 on neutrophils70,71. Overall, our pre-
sent results support the potential causal effects of white blood
cells, especially neutrophils, on severe COVID-19, likely through
an enhanced immune response that suppresses virus infection in
the early stage.

To identify potential drug targets, we found that five immune-
related proteins are inversely associated with the risk of severe
COVID-19. Interleukin-3-receptor subunit alpha plays important
functions in hemopoietic, vascular, and immune systems72. Prostate-
associated microseminoprotein may influence inflammation and
cancer development73. C–C motif chemokine 23 is a chemotactic
agent, which probably plays an important role in inflammation and
atherosclerosis74. Collectin-10 can act as a cellular chemoattractant

in vitro, probably involved in the regulation of cell migration75.
Reticulon-4 receptor influences the central nervous system and
protects motoneurons against apoptosis76. The identification of
these immune-related circulating proteins highlights the critical role
of immune responses in the development of severe COVID-19.

Our study identified another six circulating proteins to be
positively associated with an increased risk of severe COVID-19.
Most of them are glycoproteins. The effect of zinc-alpha-2-
glycoprotein might be mediated by the depletion of fatty acids
from adipose tissues77. C1GALT1-specific chaperone 1 might
abolish a glycosyltransferase function and disrupt the O-glycan
Core-1 synthesis78,79. Corneodesmosin is a glycoprotein expres-
sed in the epidermis and the inner root sheath of hair follicles80.
Inter-alpha-trypsin-inhibitor heavy chain H1 is involved in cell
adhesion and leukocyte migration in inflammation sites81. The
alpha-2-macroglobulin receptor-associated protein is responsible
for the role of exotoxin A in pseudomonas disease and
immunity82. Resistin is known as a hormone that potentially links
obesity to diabetes through resisting insulin action62. More in-
depth mechanistic work is needed to better understand the
physiological and biological processes through which these
druggable proteins contribute to COVID-19 severity. While our
study identified scores of circulating proteins, we cannot rule out
the possibility that there are more COVID-19-related proteins.
The number of genetic instruments is often limited for circulating
proteins, precluding many of them from being analyzed. Our
findings of circulating proteins not only suggest possible etiolo-
gical processes but also provide potential druggable targets.

Our study has many strengths. One strength as an MR study is
the ability to assess causal effects, avoiding bias from reverse cau-
sation and residual confounding. A major feature and strength of
our study is an unbiased and large-scale approach to screen an
extensive list of risk factors. To address the issue of multiple testing,
we used FDR corrections in the discovery analysis. To ensure
robustness and reduce false positives, we only reported results that
were replicated in at least one replication analysis. Another strength
is that we applied multivariable MR analyses to evaluate the inde-
pendent causal effects of fat mass and fat-free mass. To ensure
reproducibility and to encourage open science, we have released our
computational pipeline. As a demonstration of the readiness of this
pipeline, in the manuscript revision phage, we included additional
analysis based on GWAS from HGI releases 4 and 5. We encourage
readers to use our pipeline to update results for future HGI releases
or for new risk factors from the IEU OpenGWAS database. Com-
paring our primary analysis based on HGI release 4 alpha to results
from releases 4 and 5 demonstrates the high robustness of our
prioritized list of risk factors. Additionally, comparing our primary
analysis based on severe forms of COVID-19 to results based on any
SARS-CoV-2 infection distinguishes risk factors that may mainly
impact the susceptibility to infection, the severity of disease pro-
gression, or both processes.

Our study also has several weaknesses. First, our two-sample
MR analysis inherits many of the limitations and complications of
the COVID-19 GWAS, which meta-analyzed studies with very
heterogeneous designs, ascertainment and phenotyping of cases,
and sources of control samples. Although significant efforts have
been spent in enhancing the robustness of genetic findings
and many loci have been shown to be biologically meaningful27,
the usage of nonrepresentative convenience samples may
induce collider bias that distorts phenotypic and genetic
associations28–30. Second, although we applied multiple sensitiv-
ity analyses in our MR analysis, including the heterogeneity test,
MR-Egger, and WM method, we could not fully rule out the
possibility that some genetic variants might be pleiotropic.
Another approach to test the assumptions of independence and
no horizontal pleiotropy is to examine known associations with
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potential confounders or other phenotypes using databases such
as PhenoScanner47,48. We performed an exemplary lookup and
validation for six exposures that have a small number of genetic
instruments (the five significant and doubly replicated circulating
proteins in Supplementary Fig. 4 and glucosamine supple-
mentation in Supplementary Fig. 3). No associations with con-
founders were observed, but four exposures have instruments
associated with either blood cell or BMI-related traits, suggesting
potential horizontal pleiotropy (Supplementary Data 14). After
excluding these genetic instruments, the effects of three exposures
remain significant (p < 0.05, Supplementary Data 15). Therefore,
this manual examination of six exposures with PhenoScanner
supports the effects of five, while that of interleukin-3 receptor
subunit alpha may be explained by horizontal pleiotropy. Similar
in-depth analysis could be performed in follow-up studies on
other exposures of interest. Third, another limitation of our
study is that some GWAS of exposures and the HGI GWAS of
COVID-19 have overlapped samples, especially those from the
UK Biobank. This sample overlap may induce bias in MR esti-
mates. Strong instruments for the instrument-exposure associa-
tion are less susceptible to this bias and all traits included in our
analysis have strong instruments (F > 10). To mitigate this issue,
we also utilized another GWAS of COVID-19, the NEJM study,
which does not have overlapping samples with exposure GWAS.
Fourth, the three COVID-19 GWAS used in our primary analysis,
the HGI A2, HGI B2, and NEJM study, have overlapped cases
and therefore do not represent independent replications. Their
inclusion in our study design may help reduce false positives in
our final list of prioritized risk factors.

Fifth, the HGI A2, HGI B2, and NEJM GWAS utilized popu-
lation controls without known COVID-19 status. While this
practice increases statistical power with much larger control-
sample sizes, it may also introduce biases in case ascertainment
and thus genetic associations. It is somewhat reassuring that our
sensitivity analysis with the HGI A1 and B1 GWAS, which uti-
lized nonhospitalized COVID-19 patients as the control, also
observed most of the prioritized risk factors. Sixth, while our
primary analysis focuses on GWAS of severe COVID-19, the
prioritized risk factors may increase the susceptibility to viral
infection or exacerbate disease progression upon infection. Our
attempt to distinguish susceptibility-related from severity-related
risk factors by including analysis with GWAS of any COVID-19
(HGI C2) is complicated by the fact that the case definition for
any COVID-19 or SARS-CoV-2 infection is biased toward severe
cases. Further mechanistic research is required to decipher the
biological pathways underpinning the effects of these prioritized
risk factors on COVID-19. Seventh, a further weakness is that the
statistical power for some exposures was limited, and some null
results might be false negatives. Further positive findings may be
revealed if more GWAS with larger sample sizes become avail-
able. Eighth, as an effort to reduce complications from population
stratification, our study focuses on European ancestry, and thus
the findings may not be generalizable to other ethnicities.

In conclusion, the present study provides evidence that the
potential causal association between BMI-related traits and severe
COVID-19 is driven by fat mass, but not by fat-free mass. Our
findings suggest that neutrophils, granulocytes, and myeloid
white blood cells are inversely associated with the severe COVID-
19 risk. Our study also identifies putatively causal associations
between scores of circulating proteins and severe COVID-19.
These findings provide valuable insights into the etiology of
severe COVID-19. These prioritized risk and protective factors
could potentially serve as drug targets and guide the effective
protection of high-risk populations.

Data availability
Source data for Figs. 2 and 3 could be found in Supplementary Data 8, and that for Fig. 4
in Supplementary Data 6. All analyses were conducted using publicly available data. The
exposure data (GWAS summary statistics) used in the analyses described here are freely
accessible in the MR-Base platform (https://www.mrbase.org/) and the IEU OpenGWAS
database (https://gwas.mrcieu.ac.uk/). Unique identifier for each dataset is available in
Supplementary Data 3. We downloaded COVID-19 data (GWAS summary statistics) in
the COVID-19 Host Genetics Initiative (https://www.covid19hg.org/) and the COVID
GWAS results browser (https://ikmb.shinyapps.io/COVID-19_GWAS_Browser/).

Code availability
The codes used in the Mendelian randomization analyses described here are freely
accessible in TwoSampleMR R package via GitHub (https://github.com/MRCIEU/
TwoSampleMR/). Full documentation for the R package is also provided (https://
mrcieu.github.io/TwoSampleMR/). We implemented the MVMR analysis using the
MVMR R package (https://github.com/WSpiller/MVMR/). The Mendelian
randomization pipeline is available on GitHub (https://github.com/yitangsun/
MR_all_COVID_19) and also deposited on Zenodo83.
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