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Abstract  

Background: The genetic locus 3p21.31 has been associated with severe coronavirus disease 2019 

(COVID-19), but the underlying pathophysiological mechanism is unknown.   

Methods: To identify intermediate traits associated with the 3p21.31 locus, we first performed a 

phenome-wide association study (PheWAS) with 923 phenotypes in 310,999 European individuals 

from the UK Biobank. For genes potentially regulated by the COVID-19 risk variant, we examined 

associations between their expression and the polygenic score (PGS) of 1,263 complex traits in a 

meta-analysis of 31,684 blood samples. For the prioritized blood cell traits, we tested their 

associations with age and sex in the same UK Biobank sample.  

Results: Our PheWAS highlighted multiple blood cell traits to be associated with the COVID-19 risk 

variant, including monocyte count and percentage (p = 1.0710-8, 4.0910-13), eosinophil count and 

percentage (p = 5.7310-3, 2.2010-3), and neutrophil percentage (p = 3.2310-3). The PGS analysis 

revealed positive associations between the expression of candidate genes and genetically predicted 

counts of specific blood cells: CCR3 with eosinophil and basophil (p = 5.7310-21, 5.0810-19); CCR2 

with monocytes (p = 2.4010-10); and CCR1 with monocytes and neutrophil (p = 1.7810-6, 7.1710-

5). Additionally, we found that almost all examined white blood cell traits are significantly different 

across age and sex groups.  

Conclusions: Our findings suggest that altered blood cell traits, especially those of monocyte, 

eosinophil, and neutrophil, may represent the mechanistic links between the genetic locus 3p21.31 

and severe COVID-19. They may also underlie the increased risk of severe COVID-19 in older adults 

and men.    
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Introduction  

The coronavirus disease 2019 (COVID-19), caused by infection of the severe acute respiratory 

syndrome coronavirus 2 (SARS‑ CoV‑ 2), affects individuals differently, with clinical manifestations 

ranging from asymptomatic infection, to mild flu-like symptoms, to severe respiratory failure (1-4). 

While some demographic factors and pre-existing conditions, especially older age and male sex, are 

well-established risk factors for severe COVID-19, the exact mechanisms are still elusive (5, 6). 

Genetic variation is partly responsible for varying individual responses (7-9). The first genome-wide 

association study (GWAS) for COVID-19 was published in June 2020, comparing 1,610 severe 

patients with respiratory failure to 2,205 healthy controls from Italy and Spain. It identified two 

genetic loci, with the most signal at locus 3p21.31 and the other at locus 9q34.2 coinciding with the 

ABO blood group locus (8). The association at locus 3p21.31 was independently replicated by the 

COVID-19 Host Genetics Initiative (9). The peak signal at this locus spans multiple chemokine 

receptor genes (e.g., CCR9, CXCR6, XCR1 and CCR1) and risk variants are associated with the 

expression of CXCR6, CCR1 and SLC6A20 (8). However, the underlying pathophysiological process is 

unknown.  

 

Phenome-wide association study (PheWAS) is an unbiased approach that evaluates the associations 

of a disease-associated genetic variant (e.g., a COVID-19 risk variant) with a wide range of 

phenotypes (i.e., the phenome). PheWAS may identify intermediate traits or biomarkers residing in 

the causal physiological route from the genetic variant to the disease of interest, or it may reveal 

unexpected comorbidities that indicate shared biological mechanisms (10, 11). Similarly, expression 

quantitative trait locus (eQTL) analysis for a trait-associated genetic variant across the transcriptome 

can identify candidate causal genes that are either close (in cis) or remote (in trans) to the variant 

(12, 13). From the perspective of a candidate gene, insights could be gained into its physiological 

pathways and downstream functional effects by examining the associations of its expression level 
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with phenotypes across the phenome, or even with the genetically predicted phenotypic status if 

measured ones are unavailable (13).  

 

This project aims to explore the mechanistic link between the genetic locus 3p21.31 and severe 

COVID-19. We first leveraged the deep phenotyping and genomic data in the UK Biobank (N = 

310,999) and performed a PheWAS for a severe COVID-19 risk variant across 923 disease 

phenotypes, biomarkers and blood cell traits. Moreover, for genes potentially regulated by the 

COVID-19 risk variant, associations between their expression levels and the polygenic scores (PGS) of 

1,263 traits were evaluated in 31,684 blood samples. These two unbiased phenome-wide 

approaches converged on blood cell traits, especially counts of monocyte, eosinophil and neutrophil, 

as the possible intermediate link between the genetic locus 3p21.31 and severe COVID-19. These 

blood cell traits are significantly associated with age and sex in UK Biobank, calling for future studies 

into their roles in the increased risk of severe COVID-19 in older adults and men.  

Method 

Ethics statement 

UK Biobank is a large population-based prospective study that recruited more than 500,000 

individuals aged 40-70 years between 2006 and 2010. It was approved by the North West Multi-

Centre Research Ethics Committee (11/NW/ 0382) and proper informed consent was obtained. All 

participants received baseline measurements, donated biological materials, and provided access to 

their medical records (14). Data for this project was accessed through an approved application to UK 

Biobank (Application ID: 48818). 
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Phenome-wide association study for the COVID-19 risk variant 

Among all UK Biobank participants, only those fulfilling the following criteria were included in our 

PheWAS analyses: 1) genetic ancestry is Caucasian; 2) included in the genetic principal component 

analysis; 3) no sex chromosome aneuploidy; 4) no high degree of genetic kinship, and 5) for relative 

pairs (kinship coefficient > 0.0884), a minimum number of participants were removed so that all 

those remaining are unrelated. A total of 310,999 unrelated individuals passed this quality control 

and filtering procedure.  

 

Three sets of phenotypes were examined: binary disease outcomes, blood and urine biomarkers, 

and blood cell traits. Binary disease status was defined by mapping ICD9/ICD10 diagnosis codes in 

the hospital episode statistics to phecodes in the PheCODE grouping system (15). To ensure 

sufficient statistical power, only phecodes with a minimum of 200 cases were retained. A total of 

858 phecodes were included in our analysis. For continuous traits, our PheWAS included 30 blood 

and 4 urine biochemistry markers, and 31 blood cell traits (14, 16, 17). The full list of phenotypes 

could be found in our additional supporting materials (18). Statistical association analyses were 

performed with the R PheWAS package (19). Logistic regression was performed for binary disease 

outcomes and linear regression for continuous blood and urine biomarkers, adjusting for age, sex, 

genotyping array, assessment center, and the first 10 genetic principal components. For statistical 

significance, we applied Bonferroni correction for the total number of phenotypes tested (i.e., p < 

0.05 / 923 = 5.42×10-5), although we note that this is a conservative approach because the 

phenotypes are not independent.  

 

For blood cell traits whose associations with the severe COVID-19 risk variant are nominally 

significant (p < 0.05), we examined their associations in two existing studies. The first is GeneATLAS, 
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a large database of associations based on 452,264 UK Biobank White British individuals (20). The 

other is a GWAS meta-analysis for 36 blood cell traits in 173,480 European ancestry individuals 

across three cohorts: UK Biobank (N = 87,265), UK BiLEVE (N = 45,694), and INTERVAL (N = 40,521) 

(21). Summary statistics for this study were retrieved from the IEU OpenGWAS database (22). We 

note that these two studies were also mainly based on UK Biobank samples and thus should not be 

considered as independent replications.  

 

eQTL and polygenic score association analysis  

To identify genes whose expression levels are associated with the COVID-19 risk variant, we inquired 

eQTL analysis results from GTEx and eQTLGen (13, 23). The GTEx project studies tissue-specific gene 

expression and regulation in 54 non-diseased tissue sites from about 1,000 individuals (23). The 

eQTLGen Consortium conducted eQTL meta-analysis in 31,684 samples of blood and peripheral 

blood mononuclear cells from 37 datasets (13). It also performed polygenic score association 

analysis to evaluate the associations between the expression level of most genes and the PGS of 

1,263 traits (13). The majority of samples in both studies are of European ancestry. In the PGS 

association analysis, multiple PGS were calculated for each trait with different GWAS, sample 

ancestry, and p value cutoffs (p = 0.01, 110-3, 110-4, 110-5, 510-8). For blood cell traits, three 

previous GWAS were used and designated as study 1 (24), study 2 (25), and study 3 (26), 

respectively. Statistical significance was defined with the false discovery rate approach (FDR < 0.05) 

(13).  

Association analysis for the age and sex effects on blood cell traits 

We evaluated the age and sex effects on 31 blood cell traits in the UK Biobank dataset with a linear 

regression model that included three variables, a continuous variable for age, a categorical variable 

for sex (female = 0 and male = 1), and a third term for the interaction between sex and age. For 
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statistical significance, we applied Bonferroni correction for the total number of blood cell traits 

tested (i.e., p < 0.05 / 31 = 1.6110-3). For each blood cell trait, we also reported their mean and 

standard deviation in all samples and also in men and women separately.   

 

Resources  

eQTLGen: https://www.eqtlgen.org/index.html 

Gene ATLAS: http://geneatlas.roslin.ed.ac.uk/ 

GTEx: https://www.gtexportal.org/home/ 

The COVID-19 GWAS Results Browser: https://ikmb.shinyapps.io/COVID-19_GWAS_Browser/ 

The COVID-19 Host Genetics Initiative: https://www.covid19hg.org/ 

The IEU OpenGWAS database: https://gwas.mrcieu.ac.uk/ 

Additional Supporting Materials: All summary statistics for our PheWAS of the COVID-19 risk variant, 

polygenic score association analysis, PrediXcan and MultiXcan analysis are available at 

https://doi.org/10.6084/m9.figshare.13637984.v1 (18).  

 

Results 

The severe COVID-19 risk variant is associated with blood cell traits 

The severe COVID-19 risk variant examined in this study is rs67959919 (G/A), whose risk allele A has 

an odds ratio (OR) of 2.07 (95% confidence interval (CI): 1.66-2.56, p = 4.6910-11) for severe COVID-

19 after adjustment for genetic principal components, age and sex (8). It is in perfect linkage 

disequilibrium (LD, r2 = 1) with the lead variant, rs11385942 (A/GA, OR = 2.11, 95% CI: 1.70-2.61, p = 
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9.4610-12) in European populations (27). The lead variant is an insertion-deletion polymorphism and 

is not found in some existing datasets. To identify phenotypes associated with rs67959919, we 

performed a PheWAS in a subset of 310,999 unrelated European individuals from the UK Biobank 

after quality control and filtering (Supplementary Table 1 for baseline characteristics). A total of 923 

phenotypes were investigated, including 858 binary disease outcomes, 34 blood and urine 

biomarkers, and 31 blood cell traits (Figure 1).  

 

With the conservative Bonferroni correction for the total number of phenotypes tested (p < 5.42×10-

5), we observed that the severe COVID-19 risk variant is associated with monocyte percentage (p = 

4.0910-13) and monocyte count (p = 1.0710-8). None of the binary disease outcomes or biomarkers 

passes this significance cutoff. The top three binary phenotypes were all related to the digestive 

system: sialolithiasis (p = 4.7610-4), periodontitis (p = 1.5310-3) and its subcategory, chronic 

periodontitis (p = 2.4310-3). At the nominal significance level (p < 0.05), associations were observed 

with additional blood cell traits: eosinophil count (p = 5.7310-3), eosinophil percentage (p = 

2.2010-3), neutrophil count (p = 0.032), neutrophil percentage (p = 3.2310-3), mean corpuscular 

hemoglobin (p = 0.042), and mean corpuscular hemoglobin concentration (p = 0.042). In GeneATLAS, 

a large database of associations based on 452,264 UK Biobank White British individuals (20), 

consistent and even more significant associations were observed (Table 1). It also revealed three 

additional suggestive negative associations: basophil count (p = 1.4010-3), basophil percentage (p = 

1.8710-3), and red blood cell (RBC) count (p = 0.022). Another meta-analysis of 173,480 European-

ancestry individuals also reported similar trends (Table 1) (21). Overall, our unbiased PheWAS 

revealed associations of the severe COVID-19 risk variant with multiple blood cell traits.  
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Expression of candidate target genes is associated with genetically predicted blood cell traits   

Candidate target genes of the COVID-19 risk variant affected through regulation of gene expression 

could be identified with eQTL analysis. Based on cis-eQTL analysis in 54 tissues from GTEx (23), the 

COVID-19 risk variant is associated with the expression of CXCR6, SLC6A20, CCR1, CCR9, RP11-

697K23.3, and LZTFL1 in a total of 9 tissues (Supplementary Table 2). Moreover, eQTLGen (13), a 

meta-analysis for cis-eQTL in 31,684 blood samples additionally identified the following genes: 

FLT1P1, CCR3, SACM1L, CCR5, CCR2 and RP11-24F11.2 (Supplementary Table 3). Trans-eQTL analysis 

in both studies did not identify any genes.  

 

For all these potential target genes of the COVID-19 risk variant, we interrogated if their expression 

levels are associated with the PGS of 1,263 traits examined in eQTLGen. A significant association 

indicates that the gene is implicated in pathways contributing to the trait (13). Multiple significant 

associations were identified after correction for multiple testing (Figure 2). Genetically predicated 

higher monocyte count is positively associated with the expression of CCR1 (p = 1.7810-6) and CCR2 

(p = 2.4010-10). Genetically predicated higher eosinophil count and basophil count are positively 

associated with CCR3 expression (p = 5.7310-21 and p = 5.0810-19, respectively). At the nominal 

significance level (p < 0.05), additional associations were observed for neutrophils, lymphocytes, 

RBC, and white blood cells (WBC). Predicted neutrophil count is positively associated with the 

expression of CCR1 (p = 7.1710-5), FLT1P1 (p = 1.4610-5), SACM1L (p = 5.6910-3) and CCR3 (p = 

0.011). A negative association was observed between predicted lymphocyte count and CCR1 (p = 

9.4110-4). Genetically predicted higher RBC count is associated with lower expression of CXCR6 (p = 

3.7410-4) and RP11-24F11.2 (p = 2.0910-3), while for WBC count, a positive association was 

observed with SACM1L (p = 8.2610-4). Notably, these associations were consistent across different 

GWAS datasets and p value cutoffs used in the PGS calculation (18). These results suggest a 
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possibility that the target gene of the COVID-19 risk variant is involved in hematologic processes and 

regulates blood cell counts. 

 

Integrating and reconciling association signals in PheWAS, eQTL, and PGS analysis, three candidate 

blood cell traits and their corresponding candidate genes were prioritized (Figure 3). First, the severe 

COVID-19 risk allele inhibits the expression of CCR1 and CCR2, subsequently reducing the monocyte 

count. Second, the risk allele downregulates CCR3 expression and further diminishes the eosinophil 

count. Third, the risk allele downregulates CCR3 expression and relieves its inhibition on the 

neutrophil count. 

 

Blood cell traits are significantly different across age and sex groups 

 Given the well-established role of older age and male sex as risk factors for severe COVID-19, we 

examined if blood cell traits are significantly different across age and sex groups by testing their 

associations in the UK Biobank. The basic statistics for 31 blood cell traits were reported in 

Supplementary Table 4. Among the 11 traits related to white blood cells, all of them are significantly 

associated with age (Table 2, p < 1.6110-3). All but one, eosinophil count, are significantly different 

in men and women. The interaction between sex and age is highly significant across all these white 

blood cell traits. Significant age and sex effects were also observed for traits related to red blood 

cells and platelets (Supplementary Table 5).       

Discussion 

With an unbiased phenome-wide scan approach, our study established two pairs of relationships: 1) 

associations of the severe COVID-19 risk variant with blood cell traits; and 2) associations between 

expression levels of candidate target genes and the PGS of blood cell traits. Integrating association 
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signals across multiple analyses prioritizes three blood cell traits, the counts of monocyte, eosinophil 

and neutrophil, and their candidate target genes, CCR1, CCR2, and CCR3. Taken together, our results 

proposed blood cell traits as the probable mechanistic link between the risk variant at 3p21.31 and 

severe COVID-19. We further showed that these blood cell traits are drastically different across age 

and sex groups, calling for future investigation into their roles in the increased risk of severe COVID-

19 in older adults and men.   

 

Hematologic manifestations are common in COVID-19 patients, especially elevated WBC and 

neutrophil counts but decreased lymphocyte and platelet counts (28-30). Leukocytosis, neutrophilia, 

lymphopenia, thrombocytopenia, and neutrophil-to-lymphocyte ratio have been repeatedly 

associated with worse COVID-19 outcomes and could serve as prognostic biomarkers (1, 4, 31-33). 

Reducing basophil count or percentage was generally observed in patients (34-36). For monocyte, its 

total number in circulation does not change dramatically in COVID-19 patients, with reports of no 

change or only slight increase (29, 36, 37). However, its composition exhibits a pronounced shift, 

with a significant expansion of its inflammatory subsets, which are not typically seen in healthy 

individuals (6, 29, 30, 37-40). The pattern of eosinophil is less well-established. Some studies 

observed diminished and even undetectable eosinophil counts (i.e., eosinopenia) in COVID-19 

patients (34, 36, 41-45), and it was also shown that eosinophil counts are positively associated with 

lymphocyte counts in both severe and non-severe cases (45). However, others did not find a 

significant difference (46), and there is also an report of an expanded eosinophil percentage among 

the total viable leukocyte CD45+ population (29). These changes in circulating blood cells are closely 

related to the infiltration and accumulation of lymphocyte, neutrophil, eosinophil, and inflammatory 

monocyte-macrophage in the lung and other organs, leading to neutrophil extracellular trap and 

cytokine release syndrome (30, 47-49). Notably, an immuno-monitoring study of COVID-19 patients 
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from acute to recovery phages observed gradual reduction of neutrophil and replenishment of 

basophil, eosinophil and non-inflammatory monocyte (50).   

   

Our PheWAS in UK Biobank for the severe COVID-19 risk variant revealed that the risk allele is 

associated with decreased monocyte count and percentage, eosinophil count and percentage, but 

with increased neutrophil percentage. These significant associations remained almost unchanged 

when the white blood cell count was included as an additional covariate. GeneATLAS reported even 

more significant associations for these relationships, probably due to its different quality control 

procedures and a larger sample size (20). It also reports suggestive evidence of negative associations 

between the risk allele and basophil count and percentage. These association directions are 

consistent with the observed blood cell count changes in COVID-19 patients, as discussed above. Of 

note, our associations were identified in the generally healthy population samples. On the other 

hand, the vast majority of existing studies measured blood cell counts at hospital admission or 

during hospitalization, which likely reflect immune responses to SARS‑ CoV‑ 2 infection. Future 

studies are warranted to evaluate if before-infection differences in blood cell counts play a role in 

modulating the risk of developing severe COVID-19, especially in the context of age and sex 

differences.  

 

Our PGS analysis for the potential target genes of the COVID-19 risk variant further unraveled 

associations with multiple blood cell counts. It is important to stress that these associations are 

consistent across analyses with PGS calculated with different GWAS datasets, p value cutoffs, and 

sample ancestries. Intersecting and reconciling association signals across PheWAS, eQTL, and PGS 

analysis yielded multiple possible pathways for the COVID-19 risk allele. Strong and consistent 

evidence was found on the pathways through monocyte and eosinophil. On the other hand, support 
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for the role of neutrophil is weaker. The association with neutrophil count was not significant in a 

meta-analysis of three UK cohorts (21). Also, the negative associations between CCR3 expression and 

PGS of the neutrophil count were only suggestive (p = 0.011). In addition to these three blood cells, 

basophil may serve as another candidate pathway: the risk allele downregulates CCR3 expression, 

reduces its stimulatory effect on basophil count, and thus leads to a reduction of basophil. 

Additional evidence for the potential importance of these candidate genes could be drawn from 

their cell-type-specific expression patterns (Supplementary Figure 1). CCR3 has highly specific 

expression in eosinophil and basophil and only slight expression in neutrophil, CCR2 has high 

expression in basophil and medium expression in classical monocyte, while CCR1 has medium to 

high expression across all types of granulocytes and monocyte. Notably, this pathway prioritization 

analysis utilized eQTL association signals in blood samples, but the regulatory effects could be 

different across tissues (23). Also, the eQTL analyses were based on generally healthy samples (13, 

23). The regulatory effects of the risk variant may be different under the SARS‑ CoV‑ 2 infection. 

Further studies are needed to examine its functional effects in patients and to identify the most 

relevant tissue. Nonetheless, our study prioritized hematologic processes as the downstream 

pathophysiology of a major genetic locus of severe COVID-19. 

 

To further confirm and examine the associations between the expression of candidate target genes 

and blood cell traits, we additionally performed association analyses between genetically predicted 

gene expression levels and observed blood cell traits in 310,999 unrelated European individuals from 

the UK Biobank, the same dataset used in the PheWAS analysis (See Supplementary Note for 

references). Applying the PrediXcan pipeline and leveraging MASHR-based models of the GTEx V8 

reference dataset, we predicted the expression levels of each candidate target gene in 49 tissues 

and cells, and further tested their associations with each of the 31 observed blood cell traits (18). To 

summarize evidence of an association between a gene and a specific trait, we applied the MultiXcan 
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tool to integrate information across all available tissues. First, these additional analyses confirmed 

the associations between the expression of candidate target genes and blood cell traits. For 

instance, across all examined tissues, observed monocyte count is associated with genetically 

predicted CCR1 (p = 2.7910-19) and CCR2 expression (p = 1.8310-28); observed eosinophil count is 

associated with genetically predicted CCR3 expression (p = 4.3510-4); observed neutrophil 

percentage is associated with genetically predicted CCR3 expression (p = 3.3510-5). Second, the 

tissue-level analysis in 49 tissues revealed tissue-specific association patterns. For instance, the 

association between CCR1 and monocyte count is positive in some tissues (e.g., amygdala, cerebellar 

hemisphere, and hippocampus), but negative (e.g., esophagus, lung, and colon) and non-significant 

in others (e.g., stomach, heart atrial appendage, and putamen basal ganglia). These tissue-

dependent patterns indicate that there are more possible pathways connecting the COVID-19 risk 

variant, blood cell traits, and COVID-19, in addition to those presented in Figure 3 and based on 

associative patterns in blood samples. The relatively large number of significant associations in 

different tissues makes it challenging to further narrow down to specific tissues. Additionally, since 

the phenotypes of special interest are blood cell counts and percentages, it will be especially 

informative if we could evaluate gene expression in specific subsets of blood cells. However, these 

are currently unavailable in the GTEx reference dataset. Nevertheless, our additional analysis 

confirms the link between a major genetic locus of severe COVID-19 and blood cell traits.     

 

The strengths of our study include the unbiased phenome-wide approach at two levels of analysis, 

the genetic variant (923 phenotypes) and the gene expression (1,263 phenotypes). The large sample 

sizes in UK Biobank (N = 310,999) and eQTLGen (N = 31,684) increase the statistical power to identify 

associations. The two phenome-wide analyses converged on multiple blood traits and the 

association directions are consistent with existing studies in COVID-19 patients, further bringing 

credibility to our findings. This study also has some weaknesses. First, there are still phenotypes not 
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covered in our analyses, such as monocyte subsets, T cells and B cells. It is possible that the COVID-

19 risk variant affects other unexplored intermediate traits. The phenotypes used in this study, 

including biochemistry markers, blood cell traits, and medical conditions, were either measured at 

recruitment or retrieved from medical records. They may not reflect the most up-to-date status, and 

some cases may be classified as healthy controls, reducing the power of our analysis. Although the 

associations between blood cell traits and the COVID-19 risk variant are consistent across three 

separate studies, they all relied on the UK Biobank and thus could not represent independent 

replications. Moreover, future fine-mapping studies are needed to identify causal variants at locus 

3p21.31 for both severe COVID-19 and blood cell traits. The possibility could not be ruled out at 

present that they are different variants in strong LD (51). Our analyses were restricted to healthy 

individuals and may not reflect patterns in COVID-19 patients. Additionally, the associations 

between gene expression and genetically predicted blood cell counts should be further confirmed 

with direct analysis of their measured counts. 

 

While this manuscript was under review, tremendous research progress was made on understanding 

the host genetics and disease etiology of COVID-19 (See Supplementary Note for references). First, 

more genetic association studies of COVID-19 have confirmed the association of locus 3p21.31 with 

the severity of and susceptibility to COVID-19. Second, transcriptome-wide association analysis 

(TWAS) similarly highlighted genes at locus 3p21.31. The genetically predicted expression levels of 

these genes in specific tissues have been associated with COVID-19 susceptibility or severity, such as 

the association of CCR2, CCR3, and CXCR6 expression in lung tissue with critical COVID-19. Third, 

potential mechanistic insights were obtained. CCR1 and the canonical ligands for CCR1, CCR2, and 

CCR3, such as CCL2, CCL3, CCL4, CCL7, and CCL8, have upregulated expression in bronchoalveolar 

lavage fluid of COVID-19 patients. The blood level of CCL2 was significantly elevated in both mild and 

severe COVID-19 patients. Additionally, the potentially causal roles of white blood cells in the 
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development of severe COVID-19 were evaluated in a two-sample Mendelian randomization study. 

Genetically predicted lower counts of white blood cells, myeloid white blood cells, and granulocytes, 

and higher eosinophil percentage were found to be associated with an increased risk of severe 

COVID-19. These recent discoveries further strengthen the link from locus 3p21.31 to blood cell 

traits and then to severe COVID-19. 

 

In conclusion, our phenome-wide association study for the severe COVID-19 risk variant at locus 

3p21.31 and its candidate target genes identified altered blood cell traits, especially counts of 

monocyte, eosinophil, and neutrophil, as the probable mechanistic links between the genetic locus 

and severe COVID-19. These blood cell traits, together with their candidate acting genes, CCR1, CCR2 

and CCR3, represent compelling and testable hypothesis that call for follow-up studies into their 

roles in COVID-19 pathogenesis, especially in elevating the risk in the older adults and men.   
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Figure Legends  

Figure 1. A Manhattan plot showing the associations between the severe COVID-19 risk variant and 923 

phenotypes in UK Biobank. Each triangle represents one phenotype. Triangles pointing up indicate 

increasing effects of the COVID-19 risk allele on the phenotypes, while those pointing down indicate 

decreasing effects. The size of the triangle is proportional to the effect size. The significance threshold 

with Bonferroni correction (p < 0.05 / 923 = 5.42×10-5) is represented by the red dashed line. Logistic 

regression was performed for all binary traits, while linear regression was done on continuous traits. 

Summary statistics, including the sample size, for each trait are in additional supporting materials.    

Figure 2. Associations between the expression of candidate genes and the polygenic score of blood cell 

traits. Each column corresponds to a gene. Each row corresponds to a polygenic score of a blood cell 

trait. Row names are organized as the combination of trait name, study number for the GWAS providing 

summary statistics, and the sample ancestry. EUR refers to European ancestry, while ALL refers to multi-

ancestry. If no ancestry label is present, the study used only European samples. All PGS shown in this 

figure were calculated with a p-value cut off of 5×10-8. Complete association results for PGS calculated 

with other p-value cutoffs could be found in additional supporting materials. Blood cell traits are 

categorized into three groups: platelet, red blood cells, and white blood cells. The effects of association, 

Z-score, are shown as the heatmap. The statistical significance is indicated with “*” (p < 0.05) or “**” 

(FDR < 0.05). 

Figure 3. Schematics of possible pathways between the severe COVID-19 risk variant and three blood 

cell traits. (A) monocyte count, (B) eosinophil count, and (C) neutrophil count. The directions of effects, 

either up-regulating or down-regulating, were inferred from PheWAS, eQTL analysis in blood samples, 

and PGS association analysis in blood samples.   
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Tables 

Table 1. Associations between the severe COVID-19 risk variant and blood cell traits 

Trait 

This Study in UKB 

N = 310,999 

GeneATLAS in UKBa 

N = 452,264 

Meta-analysis of three UK cohorts 

N = 173,480 

Beta 

(10-3) 

SE  

(10-4) 

p Beta 

(10-2) 

p Beta 

(10-2) 

SE 

(10-3) 

p 

MONO#  -3.78 6.61 1.07e-08 -0.53 1.15e-21 -4.19 7.01 2.34e-09 

MONO%  -4.81 6.63 4.09e-13 -7.80 8.79e-26 -4.48 6.99 1.45e-10 

EO#  -1.80 6.52 5.73e-03 -0.20 3.81e-06 -2.39 7.00 6.29e-04 

EO% -2.00 6.52 2.20e-03 -2.66 1.54e-05 -2.38 6.99 6.66e-04 
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NEUT# 1.39 6.50 0.032 1.04 0.035 0.42 7.04 0.55 

NEUT% 1.91 6.50 3.23e-03 13.18 1.03e-05 1.47 7.01 0.036 

MCH 1.33 6.56 0.042 1.29 0.023 1.44 6.95 0.039 

MCHC 1.34 6.61 0.042 0.64 0.070 -0.55 6.80 0.42 

 

Notes: Risk allele A is the effect allele. MONO# = Monocyte count; MONO% = Monocyte percentage; EO# = Eosinophil count; EO% = Eosinophil 

percentage; NEUT# = Neutrophil count; NEUT% = Neutrophil percentage; MCH = Mean corpuscular hemoglobin; MCHC = Mean corpuscular 

hemoglobin concentration.  

a SE is not available in GeneATLAS. 
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Table 2. The effect of age and sex on white blood cell traits 

Trait 

Age Sex SexAge 

Beta 

(10-3) 

SE  

(10-4) 

p Beta 

(10-1) 

SE  

(10-2) 

p Beta 

(10-3) 

SE  

(10-4) 

p 

WBC# -1.95 2.45 < 1.6110-3 -6.03 2.04 < 1.6110-3 11.18 3.58 < 1.6110-3 

MONO# 3.90 2.43 < 1.6110-3 -1.23 2.02 < 1.6110-3 7.08 3.54 < 1.6110-3 

MONO% 6.91 2.41 < 1.6110-3 3.04 2.01 < 1.6110-3 1.56 3.51 < 1.6110-3 

EO# -1.23 2.45 < 1.6110-3 0.16 2.04 0.42 2.87 3.57 < 1.6110-3 

EO% -0.87 2.45 < 1.6110-3 2.71 2.04 < 1.6110-3 -1.47 3.57 < 1.6110-3 

NEUT# -6.32 2.45 < 1.6110-3 -9.97 2.04 < 1.6110-3 18.50 3.57 < 1.6110-3 

NEUT% -8.72 2.45 < 1.6110-3 -11.01 2.04 < 1.6110-3 20.61 3.57 < 1.6110-3 

BASO# -4.63 2.46 < 1.6110-3 -4.70 2.05 < 1.6110-3 7.05 3.58 < 1.6110-3 
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BASO% -4.68 2.46 < 1.6110-3 -3.39 2.05 < 1.6110-3 4.49 3.58 < 1.6110-3 

LYMPH# 3.59 2.46 < 1.6110-3 1.62 2.05 < 1.6110-3 -4.48 3.58 < 1.6110-3 

LYMPH% 8.02 2.43 < 1.6110-3 11.02 2.02 < 1.6110-3 -23.99 3.54 < 1.6110-3 

Notes: The full results for all blood cell traits, including those related to red blood cells and platelets are available in Supplementary Table 5. 

WBC# = White blood cell count; BASO# = Basophil count; BASO% = Basophil percentage; LYMPH# = Lymphocyte count; LYMPH% = Lymphocyte 

percentage.  
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A Manhattan plot showing the associations between the severe COVID-19 risk variant and 923 phenotypes 
in UK Biobank. 
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Associations between the expression of candidate genes and the polygenic score of blood cell traits.   
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Schematics of possible pathways between the severe COVID-19 risk variant and three blood cell traits. 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glab035/6126770 by U
niversity of G

eorgia, Kaixiong Ye on 03 February 2021


