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Abstract: Blood levels of iron and copper, even within their normal ranges, have been associated
with a wide range of clinical outcomes. The available epidemiological evidence for these associations
is often inconsistent and suffers from confounding and reverse causation. This study aims to examine
the causal clinical effects of blood iron and copper with Mendelian randomization (MR) analyses.
Genetic instruments for the blood levels of iron and copper were curated from existing genome-wide
association studies. Candidate clinical outcomes were identified based on a phenome-wide association
study (PheWAS) between these genetic instruments and a wide range of phenotypes in 310,999
unrelated individuals of European ancestry from the UK Biobank. All signals passing stringent
correction for multiple testing were followed by MR analyses, with replication in independent data
sources where possible. We found that genetically predicted higher blood levels of iron and copper
are both associated with lower risks of iron deficiency anemia (odds ratio (OR) = 0.75, 95% confidence
interval (CI): 0.67–0.85, p = 1.90 × 10−6 for iron; OR = 0.88, 95% CI: 0.78–0.98, p = 0.032 for copper),
lipid metabolism disorders, and its two subcategories, hyperlipidemia (OR = 0.90, 95% CI: 0.85–0.96,
p = 6.44 × 10−4; OR = 0.92, 95% CI: 0.87–0.98, p = 5.51 × 10−3) and hypercholesterolemia (OR = 0.90,
95% CI: 0.84–0.95, p = 5.34 × 10−4; OR = 0.93, 95% CI: 0.89–0.99, p = 0.022). Consistently, they are
also associated with lower blood levels of total cholesterol and low-density lipoprotein cholesterol.
Multiple sensitivity tests were applied to assess the presence of pleiotropy and the robustness of causal
estimates. Regardless of the approaches, consistent evidence was obtained. Moreover, the unique
clinical effects of each blood mineral were identified. Notably, genetically predicated higher blood iron
is associated with an enhanced risk of varicose veins (OR = 1.28, 95% CI: 1.15–1.42, p = 4.34 × 10−6),
while blood copper is positively associated with the risk of osteoarthrosis (OR = 1.07, 95% CI: 1.02–1.13,
p = 0.010). Sex-stratified MR analysis further revealed some degree of sex differences in their clinical
effects. Our comparative PheWAS-MR study of iron and copper comprehensively characterized their
shared and unique clinical effects, highlighting their potential causal roles in hyperlipidemia and
hypercholesterolemia. Given the modifiable nature of blood mineral status and the potential for
clinical intervention, these findings warrant further investigation.
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1. Introduction

Iron (Fe) and copper (Cu) are two essential mineral nutrients for human health through their
vital roles in enzymatic reactions and cellular energy metabolism [1,2]. Physiological processes
that maintain the homeostasis of these minerals are often influenced by dietary loss, malabsorption,
inflammation, infection, liver disease, and dysregulated erythropoiesis. Impaired systemic iron or
copper homeostasis, including deficiency, excess, and even fluctuations in the normal ranges, could
have clinical implications [3]. Iron deficiency, the most widespread micronutrient deficiency worldwide,
is well-established to cause anemia, while iron overload can lead to chronic liver disease, cirrhosis,
and hepatocellular carcinoma [4,5]. Copper is a cofactor of many redox enzymes, and it participates
in iron metabolism either by competing with iron for binding ligands or through the action of
various iron-regulating cuproenzymes [6]. Copper is protective against iron deficiency anemia, and the
mechanistic basis is relatively well-established [7]. First, the efflux of iron from enterocytes, hepatocytes,
and macrophages into the bloodstream requires the action of two copper-dependent ferroxidases (i.e.,
hephaestin and ceruloplasmin), which oxidize ferrous iron into the transferrin-binding ferric iron [8].
In addition to enabling iron transport, copper is also required for hemoglobin biosynthesis, probably
by assisting iron import into or utilization in mitochondria [9]. These interactions of copper and iron
likely underlie their shared associations with various diseases. For instance, epidemiological studies
have reported that elevated blood levels of iron and copper are associated with a higher risk of type 2
diabetes, anemia, and osteoarthritis [10,11]. Serum ferritin and plasma copper have been associated
with an improved blood lipid profile, corresponding to a reduced risk of hyperlipidemia [12,13].
However, conflicting associative patterns have also been reported [14]. Since most existing studies
were observational and often complicated by reverse causality and residual confounding, it is still
unknown whether these associations indicate causal relationships.

Mendelian randomization (MR), a complementary approach to epidemiological observations,
utilizes genetic variants as instrumental variables to approximate the lifetime status of an exposure (e.g.,
the blood level of a mineral) and evaluates its causal effect on a clinical outcome. The random allocation
of alleles at conception and the natural direction of causality from genetic variants to phenotypes
protect MR estimates from confounding and reverse causality [15,16]. MR studies have been performed
to evaluate the causality of specific mineral–outcome pairs, such as iron on stroke, coronary artery
disease, and Parkinson’s disease [17–19]; and copper on ischemic heart disease [20]. Compared to these
hypothesis-driven MR studies with an obvious bias toward cardiovascular diseases, a phenome-wide
association study coupled with MR (PheWAS-MR) enables an unbiased and hypothesis-free scan
through a wide range of phenotypes (i.e., phenome) and prioritized candidate clinical outcomes for
MR causal inferences. PheWAS-MR has been conducted on iron, but not copper [21]. Most importantly,
few existing studies simultaneously examine multiple blood minerals at a phenome-wide scale to
disentangle their confounded clinical effects [22].

In this study, we systematically evaluated and compared the causal clinical effects of iron and
copper. Genetic instruments for the blood levels of iron and copper were curated from existing
genome-wide association studies (GWAS) with the largest sample sizes. Candidate clinical outcomes
were identified based on a phenome-wide association study between these genetic instruments and a
large number of disease outcomes from the UK Biobank (UKBB). All signals passing stringent correction
for multiple testing were followed by MR analyses. Additionally, we examined the causal association
between the iron or copper level and a subset of lipid profiles, which are essential biomarkers for lipid
metabolism diseases, in a secondary analysis with an independent dataset.

2. Methods

The guideline of Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
(Table S1) was followed in this study report. The UKBB project was approved by the North West
Multi-Centre Research Ethics Committee (11/NW/0382), and appropriate informed consent was
obtained from participants. Data used in the project were accessed through an approved application
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to UKBB. Only a subset of unrelated white British individuals with high-quality genotype data
(N = 310,999) were included in this study in order to minimize the complication of population structure.
The study design of PheWAS-MR, replication, and sensitivity analysis was prespecified. A schematic
of the overall study design is shown in Figure 1.
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Figure 1. A flow chart of the study design.

2.1. Genetic Instruments for Blood Iron and Copper

Independent genetic instrumental variables for the blood levels of iron and copper were selected
from previous GWAS (Table 1). Based on a meta-analysis of 48,972 subjects of European descent
performed by the Genetics of Iron Status consortium [23], three single nucleotide polymorphisms
(SNPs) were selected as genetic instruments for systemic iron status. These three SNPs are consistently
associated with four iron status biomarkers, including serum iron, ferritin, transferrin, and transferrin
saturation. Their effects on serum iron were used in the MR analysis. They are strong genetic
instruments, with F statistics ranging from 445 to 796 and collectively explaining approximately 3.80%
of the variation in serum iron. They have been previously used in MR analyses of iron status [18].
Genetic variants associated with the erythrocyte copper level were identified in an Australian cohort
(N = 2603) [24]. Two SNPs independently associated with erythrocyte copper were selected, which
accounted for 4.60% of the phenotypic variance. For each blood mineral, a weighted polygenic risk
score (GRS) was constructed for each UKBB participant by summing over selected SNPs weighted by
their effect sizes.
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Table 1. Single nucleotide polymorphisms (SNPs) used as genetic instruments for blood minerals in the phenome-wide association study (PheWAS) and Mendelian
randomization (MR) analyses.

SNP Effect Allele Baseline Allele Chr Closest Gene % Variance Explained F-Statistic EAF Beta a SE P

3 SNPs for Fe from Benyamin et al. (N b = 48,972)

rs1800562 A G 6 HFE 1.30 645 0.067 0.328 0.016 2.72 × 10−97

rs1799945 G C 6 HFE 0.90 445 0.15 0.189 0.010 1.10 × 10−81

rs855791 G A 22 TMPRSS6 1.60 796 0.554 0.181 0.007 1.32 × 10−139

2 SNPs for Cu from Evans et al. (N b = 2603)

rs1175550 G A 1 SMIM1 1.45 38 0.23 0.198 0.032 5.03 × 10−10

rs2769264 G T 1 SELENBP1 3.15 85 0.18 0.313 0.034 2.63 × 10−20

SNP: single nucleotide polymorphism, Chr: chromosome, EAF: effect allele frequency, SE: standard error. a. The beta coefficient of mineral-increasing allele on concentrations of blood iron
(in µmol/L), blood copper (in mmol/L). b. The sample size of the genome-wide association studies (GWAS) or meta-analysis from which the genetic variants were selected.
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2.2. Study Population

The UKBB is a population-based prospective cohort established to study genetic and environmental
determinants of human diseases. More than 500,000 individuals aged 40–69 years were recruited
between 2006 and 2010, all of whom gave written consent and underwent baseline measurements.
Participants donated blood samples for genotyping and biomarker analysis. Moreover, UKBB
participants consented access to their electronic health records. Only participants fulfilling the following
criteria were included in our analysis: genetic ancestry is European, included in genetic principal
component analysis, not outliers for heterogeneity or missing genotype rate, no sex chromosome
aneuploidy, no high degree of genetic kinship (i.e., ten or more third-degree relatives identified),
and self-reported gender matching genetic sex. Additionally, for the remaining pairs of relatives
(kinship coefficient >0.0884), a minimum number of participants were removed so that all remaining
participants are unrelated. Analysis was restricted to participants of European descent in order
to maintain consistency with the European samples used to obtain genetic instruments for blood
mineral status. A total of 310,999 unrelated individuals were included in our final analysis. Of these
participants, 53.5% were female, and the mean age was 56.86 (SD 8.0) years at baseline.

2.3. Phenome-Wide Association Study

Three phenotypic datasets in the UKBB, including inpatient hospital records, cancer registry,
and death registry, were included in this analysis. First, we used the International Classification
of Diseases (ICD) versions 9 and 10 to identify cases in the hospital episode statistics, including
both incident and prevalent cases, but not self-reported diagnoses. As ICD-9/ICD-10 codes are not
organized as independent phenotypes, we mapped them to the phecode system of distinct diseases
or traits [25]. The mapping process also automatically excluded patients with similar or potentially
overlapping diseases from the corresponding control group. The online phecode map is accessible via
the link https://phewascatalog.org/phecodes_icd10. We restricted analysis to phecodes with sufficient
numbers of cases to ensure more than 80% statistical power in subsequent MR analyses. The basic
statistics of phenotypes and their case numbers are shown in Table S2. The phecode 272.1 was used
for the identification of hyperlipidemia, and the phecode 272.11 was used for the identification of
hypercholesterolemia. For each mineral, case-control groups were generated for each phecode, and
logistic regression was performed separately for each instrument SNP, adjusting for age, sex, genotyping
array, assessment center, and the first 10 genetic principal components. Moreover, we explored the
association between the weighted GRS of each blood mineral and each phecode with logistic regression.
Given that phenotypes investigated are not totally independent even in the phecode system, we applied
the false discovery rate (FDR) method with a cutoff of 0.05 to correct for multiple testing.

2.4. MR Analyses

To assess whether blood mineral levels have causal effects on the candidate clinical
outcomes identified by the PheWAS, we further conducted two-sample MR analyses, where
the instrument–mineral and instrument–outcome associations were estimated in two different
samples. In this study, the instrument–mineral effect was estimated in previous GWAS, while
the instrument–outcome effect was estimated in the above-mentioned PheWAS. To estimate the causal
effect of each mineral on a phenotype, for each genetic instrument, we calculated the ratio of its effect
on the phenotype to its effect on the blood mineral. An overall effect estimate across multiple genetic
instruments was achieved with three methods, the inverse-variance weighted (IVW) method, weighted
median (WM) method, and MR-Egger [26,27]. Effect estimates, measured as the odds radio (OR)
of the outcome, were normalized to one standard deviation (SD) increment in each blood mineral.
Additionally, sex-stratified IVW MR estimates were obtained with sex-specific instrument–outcome
effects from genetically males and females, respectively. Mineral–outcome pairs exhibiting evidence of
horizontal pleiotropy were excluded in this stratified analysis.

https://phewascatalog.org/phecodes_icd10
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To evaluate the effects of blood iron and copper on four blood lipids, including total cholesterol
(TC), high-density lipoprotein cholesterol (HDL cholesterol), low-density lipoprotein cholesterol
(LDL cholesterol), and triglycerides, we first performed MR analysis with the instrument–outcome
associations estimated in the UKBB. To validate the mineral–outcome relationships that we discovered
based on the UKBB, we performed replication analysis in a different cohort, the Global Lipids Genetics
Consortium (GLGC). The instrument–outcome summary statistics from this GWAS were accessed
through the MR-Base [28,29]. To further evaluate if the effects of two minerals on a shared clinical
outcome are independent of each other, we adopted a multivariable MR framework [30], in which
the effects of multiple related risk factors can be estimated simultaneously. For instance, to test if the
effects of iron and copper on a shared clinical outcome (e.g., hyperlipidemia) are independent, we
included all the genetic instruments for iron and copper in the analysis. The effect sizes of instrument
SNPs on blood iron and copper were extracted from previous GWAS [23,24], while their effects on the
shared clinical outcome were calculated in our curated UKBB dataset. We modeled the SNP effects on
the shared outcome (βshared) against the SNP effects on iron (βFe), adjusted for the effects on copper
(βCu), using a weighted linear regression model (βshared~βFe + βCu), where the weights were defined
by inverse standard errors of βshared.

2.5. Sensitivity Analyses

We first evaluated the strength of the genetic instruments with the F statistic, and the degree of
violation of the NO Measurement Error (NOME) assumption using the I2 statistic [31]. In cases where
the NOME assumption is violated, the simulation extrapolation (SIMEX) method was used to correct
for attenuation bias [31]. Several sensitivity analyses were further performed to detect and correct for
the presence of pleiotropy in the causal estimates. Since the IVW estimate is essentially a weighted
average of the Wald ratios obtained from each SNP, if any of the SNPs exhibit horizontal pleiotropy,
then the causal effect estimate is liable to be biased. We obtained the IVW estimate by integrating the
SNP-specific Wald estimates using the multiplicative random-effects model. The possible presence of
heterogeneity across genetic instruments were evaluated with Cochran’s Q test. We further performed
WM MR [27] and MR-Egger analyses [32]. The WM analysis calculates the median of an empirical
distribution of MR association estimates weighted by their precisions. It provides consistent estimates
when more than half of the instruments are valid [27]. The MR-Egger method provides an intercept
test, with a non-zero intercept indicating the presence of unbalanced horizontal pleiotropy. It also
provides an unbiased estimate of the causal effect, taking into account pleiotropy. In addition to the
above-mentioned sensitivity analyses that leverage information from multiple genetic instruments for
one blood mineral, for each individual genetic instrument, we also evaluated their pleiotropic effects
by searching the GWAS catalog and PhenoScanner V2 [33], to identify any secondary phenotypes
associated (p < 5 × 10−8) with them or their proxies (r2 > 0.8). Lastly, we performed a leave-one-out
analysis to confirm that the results are not driven by a specific genetic instrument.

All analyses were conducted using the MendelianRandomisation [34] and TwoSampleMR [28]
packages, and the R programming language.

3. Results

After quality controls on the full UKBB dataset, a subset of 310,999 unrelated individuals of
European descent were included in the PheWAS analysis. The main demographic characteristics of
the study population and basic statistics of all genetic instruments are summarized in Table S3. All
instrument SNPs satisfied the Hardy–Weinberg equilibrium test (p > 0.05). The association between
the weighted GRS of each blood mineral and common confounding factors (i.e., age, sex, genotyping
array, assessment center, and the genetic principal components) are presented in Table S4. All these
factors were controlled for in the PheWAS analysis.

PheWAS analysis was limited to phenotypes (i.e., phecodes) that had enough cases to ensure
more than 80% statistical power in the subsequent MR analyses. Among them, 12 clinical outcomes,
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representing six disease categories, reached statistical significance at the 5% FDR threshold. Next,
we performed MR analyses to examine the possible causal links of blood iron and copper to each
of the significant outcomes identified in PheWAS. Mineral–outcome pairs exhibiting consistent MR
evidence for causal effects, without suggestions of heterogeneity or horizontal pleiotropy across genetic
instruments based on Cochran’s Q statistic and MR-Egger’s intercept test, are presented here (Table S5).

3.1. Shared and Unique Causal Clinical Effects of Blood Iron and Copper

Genetically determined blood levels of iron and copper share some of the associated clinical
outcomes, including iron deficiency anemia, disorders of lipid metabolism, hypercholesterolemia,
and hyperlipidemia (Figure 2). IVW MR analyses provided significant evidence for causal effects of
both higher blood iron and copper on reduced risks of iron deficiency anemia (OR per SD increase
in blood iron = 0.75, 95% confidence interval (CI): 0.67–0.85, p = 1.81 × 10−6; OR per SD increase in
blood copper = 0.88, 95% CI: 0.79–0.99, p = 0.032) and disorders of lipid metabolism (OR = 0.90, 95%
CI: 0.85–0.96, p = 6.61 × 10−4; OR = 0.92, 95% CI: 0.87–0.98, p = 4.94 × 10−3), and its two subtypes,
hyperlipidemia (OR = 0.90, CI: 0.85–0.96, p = 6.44 × 10−4; OR = 0.92, CI: 0.87–0.98, p = 5.51 × 10−3) and
hypercholesterolemia (OR = 0.90, CI: 0.84–0.95, p = 5.34 × 10−4; OR = 0.93, CI: 0.88–0.99, p = 0.022).
Moreover, unique causal clinical effects were identified for iron and copper. Per SD increase in blood
iron is associated with enhanced risks of varicose veins (OR = 1.28, CI: 1.15–1.42, p = 4.34 × 10−6) and
acquired foot deformities (OR = 1.21, CI: 1.09–1.35, p = 4.95 × 10−4) but with reduced risk of other
anemia (OR = 0.72; CI: 0.65–0.79; p = 1.12 × 10−11). Per SD increment in blood copper is associated
with an increased risk of osteoarthrosis (OR = 1.07, CI: 1.02–1.13, p = 0.010).
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Figure 2. A forest plot showing significant mineral–outcome associations based on MR analysis. The
causal estimates are from inverse-variance weighted (IVW) MR and have no indications of pleiotropy.
The odds ratios (ORs) with their 95% confidence intervals (CIs) are scaled to a 1-SD increase in blood
iron or copper level. Complete MR results are provided in Table S5.
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3.2. Causality of Both Iron and Copper on Lipid Metabolism Traits

We performed a further investigation into the shared clinical effects of blood iron and copper
on lipid metabolism disorders, by first evaluating if they are independent of each other and then by
examining their causal effects on blood biomarkers of lipid metabolism, including TC, HDL cholesterol,
LDL cholesterol, and triglycerides. First, we adopted a multivariable MR framework to estimate the
direct effects of blood iron and copper on their shared clinical outcomes by conditioning on the effects
of the other mineral. We found that the causal effects of iron and copper on lipid metabolism disorders
are independent of each other and do not show substantial differences from univariate MR estimates
(Table S6).

Based on the shared but independent effects of iron and copper on lipid metabolism disorders,
we further hypothesized that their genetically predicted levels are associated with blood biomarkers
of lipid metabolism. We tested this hypothesis in the UKBB with the exclusion of participants under
statin medication and in an independent replication cohort from the GLGC (Table 2). Per SD increment
of blood iron is associated with an 0.089 mmol/L decrease of LDL cholesterol (WM β = −0.089, SE =

0.014, p = 5.27 × 10−11 in UKBB) and 0.096 mmol/L decrease of TC (WM β = −0.096, SE = 0.018, p = 8.99
× 10−8 in UKBB) but an 0.047 mmol/L increase of triglycerides (WM β = 0.047, SE = 0.012, p = 4.2 ×
10−5 in UKBB). While the IVW method yields significant results in the same effect directions, horizontal
pleiotropy was detected. WM estimates are robust to pleiotropy as long as more than half of the genetic
variants are valid instruments. In GCLC, the same effect directions with statistical significance were
observed with the WM method. No significant effects were found for HDL cholesterol in either cohort.
For blood copper, while no significant effects were found in the UKBB, analysis in the GCLC cohort
showed that per SD increase in copper is associated with a 0.048 mmol/L reduction of LDL cholesterol
(IVW β = −0.048, SE = 0.019, p = 0.011 in GCLC) and 0.043 mmol/L reduction of TC (IVW β = −0.043,
SE = 0.018, p = 0.02 in GCLC). Overall, we found evidence for shared effects of iron and copper in
reducing the blood levels of LDL cholesterol and TC.

3.3. Interpretation of Potential Pleiotropy in MR Results

To detect and correct for any possible pleiotropic effect of multiple instruments, we conducted
multiple sensitivity analyses. First, F statistics for all genetic instruments were >10, indicating that
weak instrument bias was unlikely to affect the IVW analyses. With regard to the potential violation
of the NOME assumption, I2

GX statistics indicated that measurement errors in the SNP–exposure
associations do not substantially attenuate the exposure to outcome effect estimates (I2

GX > 0.9). All
causal clinical effects of iron and copper presented above in the combined analysis do not have evidence
for heterogeneity or horizontal pleiotropy across genetic instruments, as indicated by Cochran’s Q
statistic and MR-Egger’s intercept test (Table S5). The MR estimates with the SIMEX adjustment were
directionally consistent with the unadjusted estimates (Table S5). Leave-one-out analysis for each
candidate phenotype did not alter the results substantially (Table S7). For some relationships, causal
estimates from WM MR and MR-Egger are broadly consistent with those from IVW MR, although with
wider confidence intervals as expected from their lower statistical powers [35]. For instance, the causal
estimates of blood iron on disorders of lipid metabolism were consistent in the IVW MR (OR = 0.90, CI:
0.85–0.96, p = 6.61 × 10−4) and WM MR (OR = 0.91, 95% CI: 0.85–0.97, p = 6.25 × 10−3). In addition to
sensitivity analyses that leverage information from multiple genetic instruments for one blood mineral,
for each individual instrument SNP, we also evaluated its pleiotropic effects by searching the GWAS
catalog and PhenoScanner V2 [33]. The HFE rs1800562 variant is associated with LDL cholesterol [29],
and this SNP was identified as potentially pleiotropic, although it likely represents vertical pleiotropy
in the analysis of lipid-related traits and does not violate the MR assumptions. Similar magnitudes of
associations were observed when this variant was excluded from the MR analyses (Table S7).
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Table 2. MR analyses of iron and copper on blood lipids (mmol/L) in UK Biobank (UKBB) and Global Lipids Genetics Consortium (GLGC).

Exposure/Outcome MR Method Beta SE 95% CI P-Effect P-Pleiotropy n_Total Data

Iron

HDL cholesterol WM −0.008 0.015 (−0.037, 0.021) 0.602 -
183,990 GLGCIVW −0.003 0.013 (−0.028, 0.022) 0.801 0.396

MR Egger −0.062 0.055 (−0.170, 0.045) 0.459 0.430

WM −0.005 0.004 (−0.012, 0.003) 0.231 -
224,140 UKBBIVW −0.002 0.004 (−0.011, 0.006) 0.589 0.162

MR Egger −0.021 0.014 (−0.048, 0.005) 0.361 0.385

LDL cholesterol WM −0.058 0.019 (−0.095, −0.021) 0.002 -
169,960 GLGCIVW −0.100 0.043 (−0.184, −0.015) 0.020 6 × 10−5

MR Egger −0.351 0.059 (−0.467, −0.235) 0.106 0.143

WM −0.089 0.014 (−0.116, −0.062) 5.27 × 10−11 -
244,476 UKBBIVW −0.083 0.042 (−0.165, −0.001) 0.048 7.6 × 10−13

MR Egger −0.279 0.127 (−0.528, −0.031) 0.271 0.356

Total cholesterol WM −0.047 0.019 (−0.085, −0.010) 0.013 -
184,158 GLGCIVW −0.083 0.044 (−0.169, 0.003) 0.060 1.9 × 10−5

MR Egger −0.342 0.057 (−0.454, −0.230) 0.106 0.135

WM −0.096 0.018 (−0.132, −0.061) 8.99 × 10−8 -
244,950 UKBBIVW −0.090 0.056 (−0.201, 0.020) 0.109 9.8 × 10−14

MR Egger −0.359 0.162 (−0.676, −0.042) 0.270 0.336

Triglycerides IVW 0.034 0.012 (0.010, 0.059) 0.006 0.958
174,687 GLGCWM 0.033 0.013 (0.007, 0.059) 0.014 -

MR Egger 0.049 0.053 (−0.055, 0.154) 0.524 0.986

WM 0.047 0.012 (0.025, 0.070) 4.2 × 10−5 -
244,754 UKBBIVW 0.043 0.016 (0.012, 0.074) 0.006 0.043

MR Egger −0.040 0.035 (−0.109, 0.030) 0.463 0.250
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Table 2. Cont.

Exposure/Outcome MR Method Beta SE 95% CI P-Effect P-Pleiotropy n_Total Data

Copper

HDL cholesterol IVW 0.004 0.028 (−0.050, 0.058) 0.880 0.116 94,311 GLGC
IVW 0.002 0.003 (−0.004, 0.008) 0.448 0.885 221,738 UKBB

LDL cholesterol IVW −0.048 0.019 (−0.085, −0.011) 0.011 0.785 89,888 GLGC
IVW −0.008 0.013 (−0.033, 0.017) 0.543 0.100 241,831 UKBB

Total cholesterol IVW −0.043 0.018 (−0.079, −0.007) 0.020 0.823 94,595 GLGC
IVW −0.013 0.016 (−0.044, 0.017) 0.388 0.121 242,304 UKBB

Triglycerides IVW −0.024 0.020 (−0.063, 0.015) 0.233 0.241 91,013 GLGC
IVW −0.008 0.009 (−0.025, 0.008) 0.333 0.874 242,112 UKBB

Note: P-pleiotropy value for IVW methods represents the Cochran’s Q test, while for MR Egger method represents the intercept test; MR, mendelian randomization; IVW, inverse-variance
weighted; WM, weight median.
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Due to the well-known sex differences in iron and copper status and metabolism [36–39], we
additionally performed sex-stratified IVW MR analysis to identify sex-specific clinical effects of
these minerals. We identified multiple mineral–outcome pairs exhibiting possible sex-specific causal
relationships (Figure 3, Table S8). That is, their MR estimates are significant only in one sex group, but
not in the other or the sex-combined sample. Iron is associated with higher risks of myeloproliferative
diseases (OR = 2.20, CI: 1.37–3.53, p = 1.14 × 10−3) in females and chronic liver disease (OR = 1.47, CI:
1.07–2.03, p = 0.017) in males. Moreover, copper increases the risk of diabetes mellitus (OR = 1.20, CI:
1.02–1.40, p = 0.027) and its subcategory, type 2 diabetes (T2D) (OR = 1.19, CI: 1.00–1.40, p = 0.044) in
females. However, blood iron and copper have no sex-specific effects on lipid metabolism diseases.
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Figure 3. A forest plot showing significant mineral–outcome associations based on sex-stratified MR
analysis. Results in the male, female, and combined analyses are shown. The causal estimates are
from IVW MR and have no indications of pleiotropy. The odds ratios (ORs) with their 95% confidence
intervals (CIs) are scaled to a 1-SD increase in blood mineral level. Complete MR results are provided
in Table S8.

4. Discussion

Our study adopted a phenome-wide approach to systematically evaluate and compare the clinical
effects of blood iron and copper. This is the first PheWAS-MR study for copper, and the first to
perform systematic comparison across iron and copper. The MR approach reduces the biases from
confounding and reverse causality, which affect most observational associations. This strategy utilizes
genotype–exposure and genotype–disease associations to strengthen inferences between modifiable
exposure and diseases, aiming to reduce disease risk in the population by modifying the exposure
through lifestyle changes or clinical interventions. Our findings highlight the shared protective
effects of iron and copper on lipid metabolism disorders and iron deficiency anemia. Some potential
causal mineral–outcome relationships identified in this study have been well known and supported
by existing mechanistic studies, while others are novel, awaiting further confirmation and future
mechanistic exploration.

Most notably, we found that genetically predicted higher blood levels of iron and copper are
both protective against lipid metabolism disorders and its two subcategories, hyperlipidemia and
hypercholesterolemia. Consistently, they are also associated with lower blood TC and LDL cholesterol
levels. This is the first MR study to establish the probable causal protective effect of copper on lipid
metabolism disorders. The interplays among lipid, iron, and copper metabolism have been recognized,
but they are complex and not fully elucidated. Epidemiological findings of the effect of copper on lipid
metabolism are equivocal, with some studies showing negative associations of blood copper with both
TC and LDL cholesterol [40], and others showing positive associations [41]. The relationship between
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iron status and blood lipids is similarly ambiguous. Some epidemiological studies found that blood
iron is lower in hyperlipidemic patients [42] and that blood ferritin is negatively associated with LDL
cholesterol [13]. Very likely related, elevated iron status is negatively associated with coronary artery
disease in both observational and MR studies [43,44]. Other studies have found that anemic and/or
iron-deficient patients and animal models tend to have lower blood TC and LDL cholesterol [45],
while blood ferritin has often been found to be positively associated with an unhealthy lipid profile
(i.e., elevated TC, LDL cholesterol, and triglyceride, but decreased HDL cholesterol) [46]. These
conflicting observations likely suffer from residual confounding and reverse causation, highlighting
the importance of MR studies.

To gain mechanistic insights into how iron regulates lipid metabolism, we searched for
iron-responsive elements in genes involved in cholesterol metabolism and fatty acid degradation using
available databases [47]. Multiple potential iron-responsive genes were identified, including LIPH and
LDLRAP1 (Figures S1 and S2). Additional mechanistic insights into the potential protective effects of
blood iron on lipid metabolism disorders can be drawn from studies on rats. It has been shown that iron
deficiency upregulates lipogenic genes but downregulates apolipoprotein H and genes involved in the
mitochondrial beta-oxidation, resulting in increased circulating lipids [48]. For copper, its deficiency
has long been linked to increased risks of hyperlipidemia and cardiovascular diseases in both humans
and animal models [49], while copper supplementation in patients of hyperlipidemia was shown to
improve the blood lipid profile [50]. Multiple possible molecular mechanisms have been suggested for
the effect of copper deficiency on lipid metabolism disorders, mainly from studies on copper-deficient
rats. First, copper deficiency has been shown to increase the level of a key enzyme in the cholesterol
synthesis pathway, hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase [49,51]. An intestinal
transcriptome analysis found that in copper-deficient rats, genes involved in mitochondrial and
peroxisomal fatty acids beta-oxidation are down-regulated, and genes involved in plasma cholesterol
transport are up-regulated [52]. It was also observed that HDL apolipoprotein catabolism was increased,
but HDL uptake did not change in the liver and adrenal gland, which are organs that can further
metabolize cholesterol [53,54]. Our study highlights the deficiency of iron and copper as likely causal
risk factors for dyslipidemia and calls for future studies into their physiological mechanisms.

Well-known mineral–outcome relationships with established physiological mechanisms provide
support for the power and validity of our study. Iron is an integral component of the oxygen-carrying
hemoglobin and is required for the process of erythropoiesis [4]. In agreement with this, we found
that a genetically predicted higher level of blood iron is protective against anemia, while in women,
it increases the risks of myeloproliferative disease, polycythemia vera, and secondary polycythemia.
Myeloproliferative diseases are bone marrow and blood disorders featured by abnormal hematopoiesis,
while its most common subtype, polycythemia vera, is characterized by erythrocytosis (i.e., excessive
red blood cell production) [55]. Very interestingly, iron deficiency without anemia is present in virtually
all patients of polycythemia vera [56]. Our findings suggest that iron deficiency is the result, rather
than the cause, of erythrocytosis and reaffirm the current practice of not using iron supplements to
treat patients of polycythemia vera. At the other extreme, iron overload can cause tissue damage, and
its excessive accumulation in the liver leads to cirrhosis and hepatocellular carcinoma [3]. Consistently,
our study revealed that elevated blood iron in men is positively associated with risks of chronic liver
disease and cirrhosis, and one of its subtypes, other chronic nonalcoholic liver disease.

Our study revealed a novel role of blood iron in increasing the risk of varicose veins. Varicose
veins, a common venous disease of the lower extremity, is characterized by incompetent valves, reflux,
and venous wall dilation. Its etiological process involves the hydrostatic-pressure-induced activation
of matrix-degrading enzymes and inflammatory cascade [57]. Iron overload and its causal HFE genetic
variations have been associated with the development of varicose veins [58]. Mechanistically, iron
overload induces oxidative stress and the hyperactivation of matrix-degrading enzymes [59]. Other
significant mineral–outcome relationships are also worth mentioning. We found that genetically
predicted higher blood iron is associated with an increased risk of glossitis (i.e., tongue inflammation),
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which is consistent with what has been reported in a previous MR study [21]. However, it is fairly
well established that patients of atrophic glossitis frequently suffer from deficiencies of nutrients,
including iron, and corresponding nutrient supplementation is able to resolve oral symptoms [60].
The reconciliation of these disparate data is needed in future studies. Our findings open many new
research avenues to elucidate the roles of blood iron and copper in these clinical conditions.

Our study has strengths and limitations. This is the first comparative PheWAS-MR of iron and
copper, based on a large prospective cohort, to simultaneously evaluate their shared and unique causal
clinical effects. Our approach is unbiased and hypothesis-free. In this study, only MR estimates with
no indications of pleiotropy were reported. For selected outcomes (i.e., blood lipids), we replicated the
results in an independent dataset. The sex-stratified analysis enabled the identification of sex-specific
relationships. Our results confirmed some previous MR findings while making novel discoveries, most
of which are supported by existing epidemiological and mechanistic studies. Our study has a number
of limitations. The first assumption of MR is that the genetic instrument must be strongly associated
with the exposure [61]. We attempted to satisfy this assumption by using exposure-associated genetic
variants at the genome-wide significance level. However, these instruments only explain a small
portion of the phenotypic variance of these blood minerals. The instrumental variables we used explain
≈3.8% of the variance in blood iron status and 4.6% for blood copper in relatively small samples. This
means that the analyses may be subject to weak instrument bias, which may reduce the statistical
power to identify significant associations [62]. However, our F and I2

GX statistics for all instruments
suggest that our results were not substantially affected by weak instrument bias. Nevertheless, it would
be essential to repeat these analyses using instruments from better powered GWAS with larger sample
sizes. Additionally, we could not fully rule out the possibility that horizontal pleiotropy affected our
results. Although the presence of horizontal pleiotropy can be examined or corrected using Cochran’s
Q test, the MR-Egger tests, and WM MR, these methods usually require a large number of instrument
SNPs [63]. Without a large enough number of genetic instruments SNPs, some of our results need to
be interpreted with caution. Still, we want to emphasize that our leave-one-out sensitivity analysis
confirmed that our results were not driven by any specific variants.

Despite a large sample size (N = 310,999) of the overall cohort, the case numbers of specific
outcomes are still small, limiting our statistical power for rare diseases and those with modest effects.
Small sample sizes may also play a role in our sex-stratified analysis, with reduced statistical power in
the male and female groups, compared to the combined group. It is possible that some negative results
in one gender group are due to a lack of power. However, we focused on outcomes that are significant
in one gender group but not significant in either the other gender group or the combined group. If the
effects are consistent across the genders, they should have been detected in the combined analysis.
Another related issue is that MR estimation assumes a linear relationship between the exposure and the
outcome, and as a result, non-linear effects might have been missed. Given the well-known threshold
effects of mineral deficiency and overload, future studies with a non-linear model will likely reveal
more clinical effects. Genetic instruments approximate the average effects over the life course, while
the physiological relevance of a blood mineral could vary by life stages and is not captured by our
study. Finally, the UKBB is a middle-and old-aged cohort, and we restricted the analysis to those of
European descent. Future studies in cohorts of younger ages or other ethnic backgrounds are needed
to confirm our findings and to search for more clinical consequences.

5. Conclusions

Our comparative PheWAS-MR study of blood iron and copper comprehensively characterized
their shared and unique clinical effects. These known and novel mineral–outcome relationships provide
profound insights into the health impacts of normally varying blood minerals and into the etiologies
of some clinical conditions, especially hyperlipidemia and hypercholesterolemia. Our findings also
emphasize the possibility and importance of managing blood minerals, probably through dietary
adjustment, in the prevention and management of these medical conditions.
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